Arquivo da categoria: Evolução

Uma dieta balanceada pode te matar mais cedo… se você é uma planária terrestre

por Piter Kehoma Boll

Há uma coisa que eu deveria fazer mais frequentemente aqui, que é apresentar minha própria pesquisa para os leitores do blog, então hoje farei exatamente isso.

Como vocês devem saber, o grupo de organismos com que trabalho é a família Geoplanidae, comumente conhecidas como planárias terrestres. Aqui no Brasil, o gênero com mais espécies é Obama, do qual falei em posts anteriores. Este gênero se tornou consideravelmente famoso após uma de suas espécies, Obama nungara, se tornar invasora na Europa, o que chamou a atenção do público especialmente por causa do nome curioso do gênero, apesar de ele não ter nada a ver com o ex-presidente dos Estados Unidos.

Enfim, durante meu mestrado, ficou claro que espécies do gênero Obama se alimentam de invertebrados de corpo mole, especialmente lesmas e caracóis, apesar de algumas espécies também se alimentarem de minhocas ou mesmo outras planárias terrestres. Obama nungara, por exemplo, se alimenta dos três grupos, apesar de parecer preferir minhocas.

Um espécime de Obama anthropophila com suas sardas testiculares. Foto minha, Piter K. Boll.*

Um espécie de Obama comum em áreas urbanas do sul do Brasil é Obama anthropophila, cujo nome, significando “amante de humanos” é uma referência a este hábito precisamente. Esta espécie possui uma cor dorsal uniformemente marrom-escura, às vezes manchada pelos testículos maduros aparecendo como manchas escuras na primeira metade do corpo. A dieta desta espécie inclui caracóis, lesmas, nemertíneos e outras planárias terrestres, especialmente do gênero Luteostriata, e mais especialmente da espécie Luteostriata abundans, que ocorre muito comumente em áreas urbanas também.

Assista Obama anthropophila capturando diferentes presas.

Assim eu me perguntei… se O. anthropophila se alimenta de diferentes tipos de invertebrados, isso significa que cada tipo fornece nutrientes diferentes, de forma que uma dieta mista é necessária ou mais benéfica que uma composta de um só tipo de presa? Para averiguar isso, dividi espécimes adultos de O. anthropophila em três grupos, cada um recebendo uma dieta diferente:

Grupo Dela: alimentado apenas com a lesma Deroceras laeve
Grupo Luab: alimentado apenas com a planária Luteostriata abundans
Grupo Mixed: alimentado com ambas as presas de forma alternada

Os resultados não forma o que eu esperava. O grupo Mixed apresentou uma taxa de sobrevivência menor que a dos grupos com dieta de só uma presa. Outro aspecto interessante foi que o grupo Mixed apresentou uma tendência a passar o dia de receber uma lesma sem comer, comendo apenas as planárias após alguns dias recebendo as presas alternadamente.

Baseado na hipótese de que uma dieta mista é mais nutritiva, eu esperava que o grupo Mixed apresentasse um desempenho melhor, ou ao menos similar ao dos grupos de dieta única se não houvesse aumento no valor nutricional com uma presa adicional. Contudo os resultados indicam que uma dieta mista pode ser ruim para a planária, ao menos se o animal precisa comer algo diferente em cada refeição.

Não sabemos o que causa isso, mas minha ideia é de que talvez diferentes presas demandem diferentes processos metabólicos, como a produção de diferentes enzimas e tal, e ter que resetar seu metabolismo constantemente é muito custoso. Como resultado, o desempenho dos espécimes recebendo tal dieta diminuiu e os animais passam a evitar um dos tipos de alimento porque comer menos é menos perigoso que misturar comida.

Uma Obama anthropophila “grávida” prestes a pôr uma cápsula de ovos. Foto minha, Piter K. Boll.*

Outro aspecto interessante é que planárias recebendo uma dieta mista, mesmo morrendo mais cedo, punham cápsulas de ovos mais pesadas que os grupos de dieta única. Cápsulas de ovos mais pesadas geralmente significam mais embriões ou mais nutriente para os embriões, aumentando o sucesso reprodutivo. Mas como um animal morrendo pode ser melhor se reproduzindo que um saudável?

Bem, isso pode estar relacionado à hipótese do investimento terminal. Acredita-se, e é provado em alguns grupos, que um organismo pode aumentar seu investimento em reprodução quando eventos reprodutivos futuros não são esperados, isto é, quando um organismo “se dá conta” de que está prestes a morrer, ele põe todo seu esforço em reproduzir-se para garantir que seus genes passem para gerações futuras.

Não podemos ter certeza de nada ainda. Mais estudos são necessários para entender melhor a relação de planárias terrestres com sua comida. O que podemos assegurar é que, assim como Obama nungara, Obama anthropophila pode acabar na Europa ou outro lugar logo porque sua dieta relativamente ampla e sua proximidade com humanos a fazem uma potencial nova espécie a ser acidentalmente espalhada pelo mundo.

– – –

Referência:

Boll PK, Marques D, & Leal-Zanchet AM (2020) Mind the food: Survival, growth and fecundity of a Neotropical land planarian (Platyhelminthes, Geoplanidae) under different diets. Zoology 138: 125722.

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

Deixe um comentário

Arquivado em Ecologia, Evolução, platelmintos, vermes

Devemos salvar ou nos livrar de parasitas?

por Piter Kehoma Boll

Parasitas são um tipo especial de organismos que vivem sobre ou dentro de outras formas de vida, lentamente se alimentando delas, mas geralmente não as matando, apenas reduzindo sua condição física em algum grau. Essa é uma forma muito mais discreta de sobreviver do que matar ou arrancar pedaços inteiros com uma mordida, como predadores (tanto carnívoros quanto herbívoros) fazem. Todavia, diferente destas criaturas, parasitas costumam ser visto como desagradáveis e nojentos. Ainda assim, o parasitismo é a forma mais comum de conseguir alimento na natureza.

Quando apresentei o carrapato-de-rinoceronte numa Sexta Selvagem recente, mencionei o dilema causado por isso. Como o carrapato-de-rinoceronte é um parasita de rinocerontes, e rinocerontes estão ameaçados de extinção, uma prática comum para melhorar o sucesso reprodutivo destes mamíferos é remover seus carrapatos, mas isso pode acabar levando o carrapato-de-rinoceronte à extinção também.

Isso de fato já aconteceu com outros parasitas, como o piolho Coleocephalum californici, que era um parasita exclusivo do condor-da-Califórnia, Gymnogyps californianus. Para salvar o condor, uma prática comum entre veterinários trabalhando com os conservacionistas era tirar os piolhos das aves e, como resultado, este piolho está agora extinto. O prejuízo que o piolho causava ao condor era tão pouco, no entanto, que sua extinção não era nem um pouco necessária, sendo nada mais que um caso de negligência e falta de empatia com uma espécie pequena e não-carismática.

O piolho-do-condor-da-Califórnia Coleocephalum californici se tornou extinto durante uma campanha mal manejada para salvar o condor-da-Califórnia Gymnogyps californianus. Imagem extraída de https://www.hcn.org/blogs/goat/the-power-and-plight-of-the-parasite

O piolho Rallicola (Aptericola) pilgrimi também desapareceu para sempre durante as campanhas de conservação para salvar seu hospedeiro, o kiwi-manchado-pequeno, Apteryx owenii, em outro trabalho falho.

Os esforços para salvar o kiwi-manchado-pequeno, Apteryx owenii, da extinção levou à extinção de seu piolho. Foto de Judi Lapsley Miller.*
A agora extinta Rallicola (Aptericola) pilgrimi. Créditos ao Museu da Nova Zelândia.**

Outro grupo de parasitas que está enfrentando a extinção são as pulgas. A espécie Xenopsylla nesiotes era endêmica da Ilha do Natal junto com seu hospedeiro, o rato-da-Ilha-do-Natal, Rattus macleari. A introdução do rato-preto, Rattus rattus, na ilha levou a um rápido declínio na população do rato-da-Ilha-do-Natal, que se tornou extinto no começo do século XX e, é claro, a pulga se extinguiu com ele. A pulga Acanthopsylla saphes provavelmente se tornou extinta também. Ela era parasita do quol-oriental, Dasyurus viverrinus, na Austrália continental. O quol-oriental hoje só é encontrado na Tasmânia, pois a população da Austrália continental se tornou extinta em meados do século XX. Contudo a pulga nunca foi encontrada em populações da Tasmânia, então provavelmente ela desapareceu na Austrália continental junto com a população local do hospedeiro.

A pulga-do-bobo-pequeno Ceratophyllus (Emmareus) fionnus. Foto de Olha Schedrina, Natural History Museum.*

Mas as coisas vêm mudando ultimamente e felizmente a visão sobre os parasitas está melhorando. Uma avaliação recente foi feita numa população de outra pulga, a pulga-do-bobo-pequeno, Ceratophyllus (Emmareus) fionnus. Esta pulga tem como hospedeiro específico o bobo-pequeno, Puffinus puffinus. Apesar de o bobo-pequeno estar longe de ser uma espécie ameaçada e ter muitas colônias ao longo da costa do Atlântico Norte, a pulga é endêmica da Ilha de Rùm, uma pequena ilha ao oeste da costa da Escócia. Devido à pequena população do hospedeiro nesta ilha, a pulga foi avaliada como vulnerável. Se a população do bobo-pequeno na ilha estivesse estável, as coisas estariam bem, mas, como você já deve imaginar, as coisas não estão bem. Assim como aconteceu na Ilha do Natal, o rato-preto também foi introduzido na Ilha de Rùm e se tornou um predador do bobo-pequeno, atacando seus ninhos.

O bobo-pequeno, Puffinus puffinus, é o único hospedeiro da pulga-do-bobo-pequeno. Foto de Martin Reith.**

Algumas ideias foram sugeridas para proteger a pulga da extinção. Uma delas é erradicar o rato-preto da ilha ou ao menos manejar sua população perto da colônia de bobos-pequenos. Outra proposta é translocar algumas pulgas para outra ilha para criar populações adicionais em outras colônias de bobos-pequenos.

Mas por que se dar ao trabalho de proteger parasitas? Bem, há razões o bastante. Primeiro, eles compreendem uma enorme parcela da biodiversidade do planeta e sua perda teria forte impacto sobre qualquer ecossistema. Segundo, eles são uma parte essencial da história evolutiva de seus hospedeiros e são, portanto, promotores de diversidade por seleção natural. Remover os parasitas de um hospedeiro eventualmente reduziria sua variabilidade genética e o deixaria mais vulnerável a novos parasitas. Devido à sua coevolução com o hospedeiro, parasitas também são uma fonte valiosa de informação sobre a ecologia e a história evolutiva do hospedeiro, ajudando-nos a conhecer a dinâmica de suas populações. Podemos até encontrar maneiras de lidar com nossos próprios parasitas ao estudar os parasitas de outras espécies, e parasitas são certamente algo que os humanos conseguiram coletar em grande número enquanto se espalhavam pelo globo.

Os parasitas podem ser incômodos, mas são necessários. Pode parecer que eles enfraquecem o hospedeiro a princípio, mas, a longo prazo, o que não te mata te fortalece.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Kirst ML (2012) The power and plight of the parasite. High Country News. Available at < https://www.hcn.org/blogs/goat/the-power-and-plight-of-the-parasite >. Access on 3 November 2019.

Kwak ML (2018) Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. Journal of Insect Conservation 22(3–4): 545–550. doi: 10.1007/s10841-018-0083-7

Kwak ML, Heath ACG, Palma RL (2019) Saving the Manx Shearwater Flea Ceratophyllus (Emmareus) fionnus (Insecta: Siphonaptera): The Road to Developing a Recovery Plan for a Threatened Ectoparasite. Acta Parasitologica. doi: 10.2478/s11686-019-00119-8

Rózsa L, Vas Z (2015) Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: should lice be reintroduced to their hosts? Oryx 49(1): 107–110. doi: 10.1017/S0030605313000628

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

**Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

***Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição Não Comercial Sem Derivações 4.0 Internacional.

Deixe um comentário

Arquivado em Conservação, Ecologia, Evolução, Extinção, Parasitas

Indo fundo com as tripas cheias de micróbios: uma lição de peixes chineses

por Piter Kehoma Boll

Ao redor do mundo todo, muitas espécies animais se adaptaram a viver em ambientes de caverna, locais que são naturalmente desprovidos de luz, parcial ou inteiramente, e são, portanto, habitats pobres em nutrientes. A falta de luz faz com que seja impossível para plantas e outros organismos fotossintetizantes sobreviverem e, como resultado, há pouco alimento disponível para criaturas não fotossintetizantes. Estas criaturas dependem quase inteiramente de alimento que entra na caverna da superfície pela água ou por animais que se movem entre a superfície e as profundezas.

Devido à falta de luz nas cavernas, animais adaptados a este ambiente são geralmente desprovidos de olhos, pois ver não é possível de qualquer jeito, e brancos, porque não há necessidade de pigmentação na pele para se proteger da radiação ou para informar qualquer coisa visualmente. Por outro lado, sentidos químicos como olfato e paladar são frequentemente muito bem desenvolvidos.

Todas estas limitações tornam os ambientes de caverna relativamente pobres em espécies quando comparados a ambientes de superfície. Ou ao menos isso é o que parece à primeira vista. Há, é claro, muito menos espécies macroscópicas, como animais multicelulares, mas estes animais são eles mesmos um ambiente que pode abrigar uma vasta e desconhecida diversidade de microrganismos dentro deles.

Como vocês devem saber, a maioria dos, se não todos os, animais possui relações mutualísticas com microrganismos, especialmente bactérias, vivendo em seus intestinos. Esses microrganismos são essenciais para muitos processos digestivos, e muitos nutrientes que animais conseguem pela comida só podem ser obtidos com o auxílio desses amigos microscópicos. Os tipos de microrganismos no intestino de um animal estão diretamente relacionados com a dieta do animal. Por exemplo, herbívoros geralmente possuem uma alta diversidade de microrganismos que são capazes de degradar carboidratos, especialmente os complexos como a celulose.

Um estudo recente, conduzido na China com peixes do gênero Sinocyclocheilus, comparou a diversidade microbiana intestinal de diferentes espécies, incluindo algumas que vivem na superfície e algumas que são adaptadas a cavernas. Todas as espécie de Sinocyclocheilus parecem ser primariamente onívoras, mas espécies diferentes podem ter preferência por um tipo particular de comida, sendo mais carnívoras ou mais herbívoras.

O estudo descobriu que espécies de Sinocyclocheilus de caverna possuem uma diversidade microbiana muito maior que espécies de superfície. Mas como isso pode ser possível se o número de recursos é limitado nas cavernas em comparação com a superfície? Bem, essa parece ser exatamente a razão.

Sinocyclocheilus microphthalmus, uma das espécies de caverna usada neste estudo. Foto extraída de Cool Goby Blog.

Como eu mencionei, espécie de Sinocyclocheilus são onívoras. Na superfície, elas possuem comida à vontade disponível e podem se dar ao luxo de escolher um tipo de comida preferido. Como resultado, sua microbiota intestinal é composta principalmente de espécies que auxiliam na digestão de um tipo específico de comida. Em cavernas, por outro lado, a comida é tão escassa que não se pode escolher e é preciso comer o que quer que esteja disponível. Isso inclui se alimentar de pequenas porções de diferentes tipos de alimento, incluindo outros animais que vivem na caverna e muitos tipos diferentes de resíduos animais e vegetais que chegam à caverna pela água. Assim, uma comunidade muito mais diversa de microrganismos intestinais é necessária para que a digestão seja eficiente.

Veja como o número de gêneros diferentes de bactérias é muito maior no grupo de caverna (direita) que em dois grupos da superfície (esquerda e centro). Imagem extraída de Chen et al. (2019)

Mais do que uma diversidade aumentada por si só, a comunidade de peixes de caverna também mostrou um grande número de bactérias que é capaz de neutralizar compostos tóxicos de vários tipos. A razão para isso ainda não é clara, mas há duas explicações possíveis que não são necessariamente mutualmente exclusivas. A primeira afirma que a água em cavernas é renovada numa taxa muito menor que águas superficiais, o que promove o acúmulo de todo tipo de substâncias, incluindo resíduos metabólicos das próprias espécies da caverna que podem ser tóxicos. A segunda hipótese é de maior preocupação e sugere que este aumento do número de bactérias capazes de degradar substâncias nocivas é um fenômeno recente causado pelo aumento de poluição da água por atividades humanas, o que está promovendo uma pressão seletiva em organismos de caverna.

A microbiota intestinal diversa de peixes de caverna é, portanto, uma estratégia desesperada mas inteligente de sobreviver num ambiente tão hostil. A natureza sempre encontra um meio.

– – –

Mais sobre espécies de caverna:

Pense nos vermes, não só nas baleias, ou: como uma planária salvou um ecossistema

O percevejo na aranha e a aranha a fiar

Sexta Selvagem: Besouro-de-Hitler

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Chen H, Li C, Liu T, Chen S, Xiao H (2019) A Metagenomic Study of Intestinal Microbial Diversity in Relation to Feeding Habits of Surface and Cave-Dwelling Sinocyclocheilus Species. Microbial Ecology. doi: 10.1007/s00248-019-01409-4

Deixe um comentário

Arquivado em Bactérias, Ecologia, Evolução, Peixes

Fiquem que nem líquen: folhas disfarçadas de tronco para evitar serem comidas

por Piter Kehoma Boll

Todos estamos familiarizados com animais de muitas espécies que desenvolveram mecanismos interessantes para evitar serem comidos. Isso inclui, por exemplo, animais que se parecem com partes de plantas:

O famoso bicho-folha-gigante Phyllium giganteum. Foto de Bernard Dupont.**

e animais que se mesclam com o fundo:

Um chacal-da-África-Oriental, Canis mesomelas, na Savana. Consegue vê-lo? Foto de Nevit Dilmen.***

Também há animais que se parecem com outros animais não palatáveis ou perigosos para afastar os predadores:

A borboleta comestível vice-rei, Limenitis archippus (acima) imita a venenosa borboleta-monarca Danaus plexippus (abaixo). Créditos ao usuário do Wikimedia DRosenbach. Fotos de D. Gordon E. Robertson e Derek Ramsey.***

Mas nós raramente pensamos que as plantas também usam este tipo de mecanismo para evitar serem comidas. Há, no entanto, alguns casos registrados de comportamentos similares em plantas. Um caso é o da planta Corydalis benecincta, cujas folhas comumente possuem a cor amarronzada das rochas ao redor:

As folhas de Corydalis benecincta se parecem com as rochas encontradas em seu habitat natural. Foto extraída de http://www.svenlandrein.com/yunnancollections/10CS2204.html

Recentemente, um estudo com plantas do gênero Amorphophallus encontrou outro caso interessante de imitação. Este gênero, que inclui o famoso jarro-titã, geralmente desenvolve uma única folha grande que em algumas espécies atinge o tamanho de uma pequena árvore ou de um arbusto. Uma folha gigante assim parece ser a refeição perfeita para um herbívoro, mas, para evitá-los, muitas espécies do gênero desenvolveram uma série de marcas ao longo do pecíolo da folha que se parecem com líquens ou cianobactérias.

Marcas semelhantes a cianobactérias no pecíolo de Amorphophallus gigas (A); Marcas semelhantes a cianobactérias + marcas semelhantes a líquens também em A. gigas (B); e marcas semelhantes a líquens em A. hewittii (C) e A. dactylifer (D). Extraído de Claudel et al. (2019).

Com esta imitação, os pecíolos, que são bem tenros, acabam se parecendo com um tronco duro e velho que não parece tão interessante para a maioria dos herbívoros. As marcas de líquens são tão bem representadas que podem até mesmo ser associadas com gêneros reais de líquens. Por exemplo, as marcas vistas nas figuras B e C acima se parecem com líquens do gênero Cryptothecia.

Líquens da espécie Cryptothecia striata, que parecem ser imitados pelas marcas em Amorphophallus gigas e A. hewittii. Foto de Jason Hollinger.*

Como e por que estas marcas evoluíram através das espécies de Amorphophallus ainda não é bem compreendido. Apesar da hipótese de que elas ajudam a planta a imitar um tronco de árvore, algumas espécies com folhas pequenas também possuem essas marcas, enquanto outras com folhas grandes não possuem qualquer marca ou as têm em padrões mais simples. O jarro-titã Amorphophallus titanum é um bom exemplo do último caso:

Amorphophallus titanum é a maior espécie de Amorphophallus, mas apresenta um padrão de líquen consideravelmente simples. Foto do usuário do flickr Bjorn S.**

Por muito tempo, as plantas foram consideradas organismos menos dinâmicos que os animais, mas em anos recentes nosso conhecimento sobre elas está aumentando e mostrando que na verdade elas são criaturas muito versáteis e desenvolveram estratégias igualmente criativas e complexas.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Claudel C, Lev-Yadun S, Hetterscheid W, & Schultz M 2019. Mimicry of lichens and cyanobacteria on tree-sized Amorphophallus petioles results in their masquerade as inedible tree trunks. Bot J Linn Soc 190: 192–214.

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

**Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 2.0 Genérica.

***Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

Deixe um comentário

Arquivado em Botânica, Evolução

Mais uma espécie se junta ao Clube das Matadoras de Marido

por Piter Kehoma Boll

Read it in English

Canibalismo sexual é o ato de comer um parceiro sexual logo antes, durante ou logo depois da cópula. Apesar de ser um comportamento consideravelmente raro, sua ocorrência é muito popular entre o público em geral.

Quando canibalismo sexual ocorre, geralmente consiste na fêmea comendo o macho. Dois casos populares são os dos louva-a-deuses e das aranhas, especialmente a viúva-negra. Este fenômeno, ao menos entre viúvas-negras, é muito mais raro do que a maioria das pessoas pensa.

Louva-a-deus-fêmea comento um macho saboroso. Foto de Oliver Koemmerling.*

Apesar de às vezes o canibalismo sexual ocorrer porque um dos parceiros confunde o outro com comida, em muitas espécies é uma estratégia selecionada evolutivamente para assegurar que a fêmea coma o suficiente para a prole se desenvolver adequadamente. Pode parecer horrível do ponto de vista humano, especialmente se pensarmos da perspectiva do macho, mas temos que lembrar que passar os genes para a próxima geração é o principal propósito da maioria dos organismos e, se o macho é bem-sucedido em fertilizar os ovos da fêmea, sua vida serviu seu propósito e ele pode morrer feliz.

Canibalismo sexual é, claro, quase exclusivamente observado entre predadores, o que é um tanto óbvio. E, como eu disse acima, ele é comumente realizado pela fêmea. Um grupo que é famoso por suas espécies com fêmeas empoderadas é a ordem de insetos Hymenoptera, que inclui abelhas, formigas, vespas, moscas-serra, entre outros. Visto que muitos himenópteros apresentam algum grau de socialidade, na qual sociedades são compostas quase exclusivamente por fêmeas, e os machos são gerados apenas para a reprodução, é curioso que canibalismo sexual nunca tenha sido registrado neste grupo… até agora.

Um estudo recentemente publicado examinou o comportamento de acasalamento de uma pequena vespa parasitoide, Gonatopus chilensis. Esta espécie pertence à família Dryinidae, da qual todas as espécies põem os ovos em insetos da subordem Auchenorrhyncha, que inclui cigarras, cigarrinhas, jequitiranaboias, entre outros. As larvas, após eclodirem do ovo, se alimentam do hospedeiro. Fêmeas adultas de vespas driinídeas também são predadores vorazes e se alimentam das mesmas espécies das quais se alimentaram como larvas.

Macho de Gonatopus chilensis (esquerda) inseminando uma fêmea (a), e fêmea comendo um macho (b e c). Extraído de Vira & Espinosa (2019).*

Após a cópula, fêmeas de G. chilensis foram frequentemente observadas tentando capturar os machos da mesmo forma como capturam as presas. Contudo apenas em uma ocasião a fêmea foi bem-sucedida e capturar o macho e comeu seu gáster (a porção grande e arredondada que forma a maior parte do abdome em vespas). Como apenas um evento de canibalismo foi observado, ele pode ser um fenômeno raro nesta espécie, mas como várias tentativas de capturar o macho foram vistas, parece que comer o macho é uma ideia interessante para as fêmeas.

Este é o primeiro caso conhecido de canibalismo sexual em himenópteros e, portanto, um registro importante que aumentou o número de grupos nos quais se sabe que este comportamento ocorre.

– – –

Você também pode gostar:

Fêmeas malvadonas não são populares entre louva-a-deuses

Libélulas machos não são tão violentas quanto se pensava

Ter poucas fêmeas transforma jabutis machos em estupradores

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Virla EG, Espinosa MS (2019) Observations on the mating behavior of a dryinid and first record of sexual cannibalism in the hymenoptera. Acta Ethologica. doi: 10.1007/s10211-019-00315-9

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

Deixe um comentário

Arquivado em Comportamento, Entomologia, Evolução

Pegos no flagra: Sexo de insetos preservado em âmbar

por Piter Kehoma Boll

Um artigo publicado recentemente descreve uma nova espécie de inseto da ordem Zoraptera a partir de dois espécimes encontrados em âmbar do Cretáceo médio do norte de Myanmar.

O casal preservado. ELes não deixaram descendentes, mas foram eternizados na ciência. Créditos a Chen & Su (2019).*

Mas a coisa mais impressionante sobre esta nova espécie pré-histórica, chamada Zorotypus pusillus, é o fato de que o fóssil contém um macho e uma fêmea que aparentemente morreram enquanto estavam acasalando. Isso é concluído porque os dois indivíduos estão muito próximos um do outro e o macho possui uma estrutura alongada saindo do seu abdome, o que provavelmente é o edeago ou órgão intromitente, um órgão similar a um pênis encontrado na maioria dos zorápteros e usado para levar o esperma até o interior da fêmea.

Um detalhe da extremidade posterior do macho mostrando o edeago ou órgão intromitente. Uma reconstrução anatômica é mostrada à direita. Cŕeditos a Chen & Su (2019).*

A ordem Zoraptera contém um número muito pequeno de espécies, atualmente 44 vivas e 14 fósseis. Eles são muito pequenos, vivem em grupos e se parecem com minúsculos cupins, apesar de não serem proximamente relacionados a estes. A maioria das espécies atuais acasala com o macho introduzindo o edeago na fêmea para entregar o esperma, mas pelo menos uma espécie, Zorotypus impolitus, não copula. Nesta espécie, o macho deposita espermatóforos microscópicos no abdome da fêmea.

A descoberta do comportamento de acasalamento preservado nesta espécie do Cretáceo indica que o comportamento de acasalamento visto na maioria das espécies vivas já era usado por espécies vivendo 99 milhões de anos atrás. A origem dos zorápteros ainda não é bem conhecida, mas este e outros fósseis indicam que eles existem pelo menos desde o começo do Cretáceo.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Chen X, Su G (2019) A new species of Zorotypus (Insecta, Zoraptera, Zorotypidae) and the earliest known suspicious mating behavior of Zorapterans from the mid-cretaceous amber of northern Myanmar. Journal of Zoological Systematics and Evolutionary Research. doi: 10.1111/jzs.12283

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

Deixe um comentário

Arquivado em Comportamento, Entomologia, Evolução, Paleontologia

Peixes-Bruxas: Outra Dor de Cabeça Filogenética

por Piter Kehoma Boll

Anos atrás, fiz uma postagem sobre os problemáticos Acoelomorpha e sua posição controversa entre animais bilaterais. Agora vou falar sobre outra dor de cabeça: peixes-bruxas.

Os peixes-bruxas são cordados primitivos que compõem a classe Myxini. Eles são animais marinhos que vivem no fundo do mar e se alimentam principalmente de vermes poliquetos que puxam para fora do substrato. Contudo eles também são carniceiros e possuem um comportamento peculiar no qual perfuram o corpo de peixes mortos e entram nele, comendo o animal morto de dentro para fora.

Espécime do peixe-bruxa-do-Pacífico Eptatretus stoutii. Foto de Jeanette Bham.*

Morfologicamente, peixes-bruxas são caracterizados pela presença de um crânio cartilaginoso, como vertebrados, mas não possuem uma coluna vertebral, mantendo a notocorda, a estrutura dorsal de material parecido com cartilagem, durante a vida toda. Devido a esta falta de vértebras, os peixes-bruxas eram classificados fora dos vertebrados, mas unidos a eles pela presença do crânio. Assim, Myxini era visto como o grupo irmão de Vertebrata e os dois juntos formavam o clado Craniata.

Entre os vertebrados, a maioria dos grupos atuais possui uma mandíbula que evoluiu de arcos branquiais modificados, compondo o clado Gnathostomata. Os únicos animais com uma coluna vertebral que não possuem mandíbulas são as lampreias (Petromyzontiformes) e, apesar de esta falta de mandíbulas ser compartilhada com peixes-bruxas, ela não é geralmente vista como uma sinapomorfia unindo estes grupos. Em peixes-bruxas, a boca sem mandíbula possui placas laterais de queratina com estruturas em forma de dente que agem mais ou menos como as mandíbulas verdadeiras de Gnathostomata, mas trabalhando a partir dos lados e não de cima e de baixo. Em lampreias, por outro lado, a boca é circular e possui estruturas de queratina em forma de dente arranjadas circularmente.

Organização geral da cabeça de peixes-bruxas, lampreias e vertebrados de mandíbula, com atenção especial às bocas. Extraído de Oisi et al. (2012).

Há muitas características morfológicas que unem lampreias a vertebrados e as separam de peixes-bruxas, a principal sendo a já mencionada coluna vertebral. Similarmente, lampreias e vertebrados de mandíbula possuem nadadeiras dorsais enquanto peixes-bruxas não as possuem. Lampreias também possuem olhos com lentes em comum com vertebrados de mandíbula, enquanto lampreias possuem ocelos simples sem lentes ou mesmo músculos associados.

Alguns dos traços compartilhados entre peixes-bruxas e lampreias, assim como a falta de mandíbulas, são geralmente vistos como um estado primitivo que mudou em vertebrados de mandíbula, ou claramente evoluíram de forma independente. Por exemplo, tanto peixes-bruxas quanto lampreias possuem apenas uma narina, enquanto vertebrados de mandíbula possuem duas, mas isto provavelmente é uma característica primitiva. Peixes-bruxas e lampreias adultos também possuem uma só gônada, mas ela aparece em peixes-bruxas pela atrofia da gônada esquerda, de forma que somente a direita se desenvolve, enquanto em lampreias as gônadas esquerda e direita se fundem em um órgão único.

Espécimes da lampreia-de-riacho-menor, Lampetra aepyptera. Foto de Jerry Reynolds.*

Portanto, morfologicamente, parece lógico considerar peixes-bruxas como grupo irmão de vertebrados, que inclui lampreias e vertebrados de mandíbula. Também é importante mencionar que há mais grupos de vertebrados sem mandíbula que estão atualmente extintos, como a classe Osteostraci, um dos vários grupos fósseis tradicionalmente chamados de ostracodermos. Apesar de também não possuírem uma mandíbula, estes vertebrados possuíam nadadeiras pares como vertebrados de mandíbula. Assim, a organização filogenética destes principais grupos com base na morfologia seria como mostrada na figura abaixo:

A hipótise dos craniados, onde peixes-bruxas são grupo irmão de vertebrados.

Contudo, nas últimas décadas, o uso de filogenia molecular desafiou esta visão ao agrupar peixes-bruxas e lampreias em um clado monofilético que é grupo irmão dos vertebrados de mandíbula. Mas como isso poderia ser possível? Tal relação implicaria que o estado primitivo dos peixes-bruxas é o resultado de perdas secundárias.

A hipótese dos ciclostomados. Peixes-bruxas são grupo irmão de lampreias.

Evidências de fósseis poderiam ajudar a esclarecer este assunto, mas a maioria dos fósseis que foram associados a peixes-bruxas não possuem caracteres morfológicos preservados que sejam bons o bastante para determinar sua correta posição filogenética. Recentemente, no entanto, um fóssil bem preservado de um peixe-bruxa do Cretáceo ajudou a elucidar parte da filogenia dos peixes-bruxas. A divergência entre lampreias e peixes-bruxas, considerando conhecimento prévio, era geralmente posicionada perto do início do período Cambriano, logo após o começo da divergência da maioria dos filos animais, mas com dados do novo fóssil, é empurrada para um ponto mais recente no tempo, pelo começo do Siluriano, mais de 130 milhões de anos depois. Este novo fóssil, chamado de Tethymyxine tapirostrum, claramente não possui esqueleto ou nadadeiras dorsais como vistos em lampreias e vertebrados de mandíbula, mas possui várias características compartilhadas com peixes-bruxas modernos.

Pelo menos duas sinapomorfias podem ser encontradas unindo peixes-bruxas e lampreias e separando-as de vertebrados de mandíbula. A primeira são os dentes, que nestes dois grupos são compostos de placas de queratina. O segundo é a organização dos miômeros, a série de músculos arranjados ao longo do corpo de cordados de forma um tanto segmentada, que tanto em peixes-bruxas quanto em lampreias começam bem ao redor dos olhos.

Considerando as evidências de dados moleculares, o novo fóssil que torna provável que peixes-bruxas e lampreias divergiram mais recentemente se são um grupo monofilético, e as prováveis sinapomorfias verdadeiras unindo estes dois grupo de vertebrados sem mandíbula, parece que peixes-bruxas e lampreias são de fato grupos irmãos, formando um clado chamado Cyclostomata e grupo irmão dos vertebrados de mandíbula, Gnathostomata. Se este é mesmo o caso, então as características aparentemente mais primitivas de peixes-bruxas são de fato o resultado de perdas secundárias e seu ancestral provavelmente possuía uma aparência mais vertebrada, com uma coluna vertebral, nadadeiras dorsais e olhos com lentes.

Mas vamos continuar de olho. As coisas podem mudar de novo no futuro conforme novos dados se tornam disponíveis.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Miyashita T, Coates MI, Farrar R, Larson P, Manning PL, Wogelius RA, Edwards NP, Anné J, Bergmann U, Palmer AR, Currie PJ (2019) Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. PNAS 116(6): 2146–2151. doi: 10.1073/pnas.1814794116

Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (2012) Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493: 175–180. doi: 10.1038/nature11794

Wikipedia. Cyclostomata. Disponível em <
https://en.wikipedia.org/wiki/Cyclostomata >. Acesso em 25 de março de 2019.

Wikipedia. Hagfish. Disponível em <
https://en.wikipedia.org/wiki/Hagfish >. Acesso em 25 de março de 2019.

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição Não Comercial 4.0 Internacional

Deixe um comentário

Arquivado em Evolução, Paleontologia, Sistemática, Zoologia