Arquivo da categoria: Evolução

Indo longe com a boca aberta a novos sabores

por Piter Kehoma Boll

Todo mundo sabe que atividades humanas levaram nosso ambiente em direção a uma situação infeliz. As formas mais populares de impacto humano incluem poluição, desmatamento e superexploração de recursos naturais, mas certamente um fator importante no remodelamento de ecossistemas é a invasão de espécies.

Enquanto os humanos se movem ao redor do mundo, eles levam muitas espécies consigo, seja intencionalmente ou não, e algumas delas se estabelecem com sucesso no novo ambiente, enquanto outras não. Mas o que faz com que algumas espécies sejam invasores bem-sucedidos enquanto outras são incapazes disso?

É evidente há algum tempo que ter um nicho amplo, isto é, uma ampla tolerância a condições ambientas e um amplo uso de recursos, é importante para ser bem-sucedido em invadir um novo habitat. A amplitude de nicho trófico, isto é, a quantidade de tipos diferentes de comida que se pode ingerir, está entre as dimensões mais importantes do nicho a influenciar a disseminação de uma espécie.

Eu mesmo estudei a amplitude de nicho trófico de seis planárias terrestres neotropicais na minha dissertação de mestrado (veja referências abaixo), e ficou claro que as espécies com o nicho mais amplo são mais prováveis de se tornarem invasoras. Na verdade aquela com o nicho mais amplo, Obama nungara, já é uma invasora na Europa, como já discuti aqui.

obama_marmorata_7

Um espécime de Obama nungara do Sul do Brasil que eu usei em minha pesquisa. Foto por mim mesmo, Piter Kehoma Boll.*

Mas a O. nungara possui um nicho trófico amplo em seu local de ocorrência nativo, que inclui o sul do Brasil, e provavelmente refletiu essa amplitude na Europa. Mas uma espécie que possui um nicho trófico mais restrito em seu local nativo poderia ampliá-lo em um novo ambiente?

Um estudo recente por Courant et al. (veja referências) investigou a dieta da rã-de-unhas-africana, Xenops laevis, que é uma espécie invasora em muitas partes do mundo. Eles compararam sua dieta em seu local de origem na África do Sul com aquela em várias populações em outros países (Estados Unidos, País de Gales, Chile, Portugal e França).

xenopus_laevis

A rã-de-unhas-africana Xenopus laevis. Foto de Brian Gratwicke.**

Os resultados indicaram que X. laevis possui um nicho consideravelmente amplo tanto em seus locais nativos quanto nos não-nativos, mas a dieta em Portugal apresentou uma mudança maior comparada àquela em outras áreas, o que indica uma grande habilidade de se adaptar a novas situações. De fato, a população de Portugal vive em água corrente, enquanto em todos os outros locais esta espécie prefere água parada.

Podemos concluir que parte do sucesso da rã-de-unhas-africana ao invadir novos habitats está relacionada à sua habilidade de provar novos sabores, aumentando seu nicho trófico além daquele de suas populações originais. A situação em Portugal, incluindo um ambiente diferente e uma dieta diferente, também pode ser o resultado de uma pressão seletiva maior e talvez as chances são de que esta população irá se transformar em uma nova espécie mais cedo que as demais.

– – –

Referências:

Boll PK & Leal-Zanchet AM (2016). Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest. Zoology 119: 162–168.

Courant J, Vogt S, Marques R, Measey J, Secondi J, Rebelo R, Villiers AD, Ihlow F, Busschere CD, Backeljau T, Rödder D, & Herrel A (2017). Are invasive populations characterized by a broader diet than native populations? PeerJ 5: e3250.

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 4.0 Internacional.

**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

Deixe um comentário

Arquivado em Conservação, Ecologia, Evolução, Extinção

Quem veio primeiro? O pente ou a esponja?

por Piter Kehoma Boll

A eterna questão está de volta, mas dessa vez parece estar concluída. Qual grupo animal é o primeiro de todos? Quem veio primeiro?

Está claro que há cinco linhagens animais que geralmente são consideradas como monofiléticas: esponjas, placozoários, ctenóforos, cnidários e bilatérios. Vamos das uma breve olhada neles:

Esponjas (filo Porifera) são sempre sésseis, isto é, não se movem e são fixos ao substrato. Elas têm uma estrutura anatômica muito simples. Seu corpo é constituído de um tipo de tubo, tendo uma grande cavidade interna e duas camadas de células, uma externa e uma interna em torno da cavidade. Há várias pequenas aberturas conectando a cavidade ao exterior, chamadas de poros, e uma ou mais cavidades grandes, chamadas de ósculos. Entre as duas camadas de células há uma meso-hila gelatinosa contendo células não-especializadas, bem como estruturas esqueléticas, incluindo fibras de espongina e espículas de carbonato de cálcio ou sílica. Algumas espécies também secretam um esqueleto externo de carbonato de cálcio sobre o qual a parte orgânica cresce. Esponjas não possuem músculos, sistema nervoso, sistema excretor ou qualquer outro tipo de sistema. Elas simplesmente vivem batendo os flagelos de seus coanócitos (as células da camada interna), criando uma corrente de ar entrando pelos poros e saindo pelo ósculo. Os coanócitos capturam partículas orgânicas na água e as ingerem por fagocitose. Todas as células de uma esponja podem mudar de um tipo para outro e migram de uma camada para a outra, de forma que não há tecidos verdadeiros.

porifera_body_structures_01

Estruturas corporais encontradas em esponjas. Foto de Philip Chalmers.*

Placozoários (filo Placozoa) são ainda mais simples que as esponjas, mas eles têm tecidos verdadeiros. Eles são organismos ameboides achatados com duas camadas de epitélio, uma dorsal e uma ventral, e uma fina camada de células estreladas. A camada ventral é ligeiramente côncava e parece ser homóloga ao endoderma (a camada do tubo digestivo) de outros animais, enquanto a camada superior é homóloga ao ectoderma (a camada da “pele”).

701px-trichoplax_adhaerens_photograph

Trichoplax adhaerens, a única espécie atualmente no filo Placozoa. Foto de Bernd Schierwater.**

Ctenóforos (filo Ctenophora), também chamados de águas-vivas-de-pente, parecem águas-vivas verdadeiras, mas uma olhada mais de perto revela muitas diferenças. Externamente eles têm uma epiderme composta de duas camadas, uma externa que contém células sensoriais, células que secretam muco e algumas células especializadas, como coloblastos que ajudam a capturar presas e células contendo múltiplos cílios usados na locomoção, e uma camada interna com uma rede de nervos e células semelhantes a músculos. Eles possuem uma boca verdadeira que leva a uma faringe e um estômago. Do estômago, um sistema de canais distribui os nutrientes ao longo do corpo. Oposto à boca há um pequeno poro anal que pode excretar pequenas partículas não-desejadas, apesar de a maior parte do material rejeitado ser expelido pela boca. Há uma camada de material semelhante a geleia (mesogleia) entre o trato digestivo e a epiderme.

bathocyroe_fosteri

O ctenóforo Bathocyroe fosteri.

Cnidários (filo Cnidaria) têm uma estrutura similar à dos ctenóforos, mas não tão complexa. Eles também possuem uma epiderme externa, mas ela é composta de uma única camada de células, e um intestino em forma de saco cercado de células epiteliais (gastroderme), bem como uma mesogleia entre os dois. Em torno da boca há um ou dois conjuntos de tentáculos. A característica mais distinta de cnidários é a presença de células urticantes em forma de arpão, os cnidócitos, que são usados como um mecanismo de defesa e ajudam a subjugar presas.

800px-cross_section_jellyfish_en-svg

Estrutura corporal de um cnidário (água-viva). Foto de Mariana Ruiz Villarreal.

Bilatérios (clado Bilatéria) inclui todos os outros animais. Eles são muito mais complexos e são caracterizados por um corpo bilateral, cefalização (eles têm cabeças) e três camadas celulares principais, o ectoderma, que origina a epiderme e o sistema nervoso, o mesoderma, que origina os músculos e as células sanguíneas, e o endoderma, que se desenvolve nos sistemas digestório e endócrino.

500px-bilaterian-plan-svg

Estrutura básica de um bilatério.

Tradicionalmente, as esponjas sempre foram vistas como os animais mais primitivos devido a sua falta de tecidos verdadeiros, células musculares, células nervosas e tudo mais. Contudo, alguns estudos moleculares recentes puseram os ctenóforos como os animais mais primitivos. Isso foi bem inesperado, já que ctenóforos são muito mais complexos que esponjas e placozoários, o que sugeriria que músculos e um sistema nervoso evoluíram duas vezes no reino animal, ou que esponjas são uma bizarra simplificação de um ancestral mais complexo, o que seria muito difícil de explicar. O sistema nervoso dos ctenóforos é de fato bem incomum, mas não tanto a ponto de precisar de uma origem independente.

Contudo agora as coisas parecem estar definidas. Um estudo publicado recentemente na revista Current Biology por Simon et al. reconstruiu uma árvore filogenética usando 1719 genes de 97 espécies animais e aplicando métodos novos e mais congruentes. Com esse conjunto de dados mais refinado, eles recuperaram a reconstrução clássica que põe esponjas na base da árvore animal, um cenário mais plausível afinal.

Mas por que outros estudos haviam encontrado os ctenóforos como o grupo mais basal? Bom, parece que ctenóforos têm taxas de substituição incomumente altas, o que significa que seus genes evoluem mais depressa. Isso leva a um problema chamado “atração de ramos longos” em reconstruções filogenéticas. Como o DNA só tem quatro nucleobases diferentes, que são adenina, guanina, citosina e timina, e cada uma delas só pode mutar em uma das outras três, quando as mutações ocorrem muito frequentemente elas podem voltar ao que eram em um ancestral passado perdido há muito tempo, levando a erros de interpretação nas relações evolutivas. É isso que parece acontecer com ctenóforos.

Assim parece que no fim das contas a esponja veio mesmo primeiro.

– – –

Referências e leitura adicional:

Borowiec ML, Lee EK, Chiu JC, & Plachetzki DC 2015. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics 16: 987. DOI: 10.1186/s12864-015-2146-4

Littlewood DTJ 2017. Animal Evolution: Last Word on Sponges-First? Current Biology 27: R259–R261. DOI: 10.1016/j.cub.2017.02.042

Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A, Lapébie P, Corre E, Delsuc F, King N, Wörheide G, & Manuel M 2017. A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology 27: 958–967. DOI: 10.1016/j.cub.2017.02.031

Wallberg A, Thollesson M, Farris JS, & Jondelius U 2004. The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20: 558–578. DOI: 10.1111/j.1096-0031.2004.00041.x
– – –
*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.
**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

3

Deixe um comentário

Arquivado em cnidários, esponjas, Evolução, Zoologia

Movendo os quadris de dinossauros e mexendo com suas cabeças

por Piter Kehoma Boll

Recentemente surgiram notícias relacionadas à filogenia de dinossauros que deixaram muitos atônitos, como você deve ter ouvido ou lido. Novas evidências anatômicas reconstruíram completamente a base da árvore genealógica dos dinossauros e estou aqui para explicar um pouco o que aconteceu.

Como todos sabemos, os dinossauros incluem uma grande variedade de criaturas, dos terópodes comedores de carne aos pescoçudos saurópodes e dos ceratopsianos chifrudos aos armados anquilossauros, entre muitos outros.

largestdinosaursbysuborder_scale

Silhueta de um humano comparada aos maiores dinossauros de cada grupo principal. Imagem de Matt Martyniuk.*

Por mais de um século, os dinossauros têm sido classificados em dois grupos, chamados Ornithischia e Saurischia. Ornithischia (“com quadril de ave”) incluem dinossauros cujos ossos pélvicos são mais similares ao que é encontrado em aves, com um púbis direcionado para trás. Saurischia (“com quadril de lagarto”), por outro lado, têm um púbis direcionado para a frente, como em répteis no geral. Isso agrupa os terópodes e os saurópodes no mesmo grupo como Saurischia enquanto outros dinossauros são agrupados como Ornithischia. Mas as aves são na verdade terópodes, assim sendo dinossauros com quadril de lagarto e não dinossauros com quadril de ave! Confuso, né? Então vamos dar uma olhada em seus quadris:

pelvic_bones1

Comparação dos quadris de um crocodilo (Crocodylus), um saurópode (Diplodocus), um terópode não aviano (Tyrannosaurus), uma ave (Apteryx), um tireóforo (Stegosaurus) e um ornitópode (Iguanodon). Vermelho = púbis; azul = ísquio; amarelo = ílio. Imagem minha, Piter K. Boll.**

Como se pode perceber, o estado primitivo, encontrado em crocodilos, saurópodes e terópodes primitivos, é o púbis voltado para a frente. Um púbis voltado para trás evoluiu pelo menos duas vezes independentemente, tanto em terópodes mais avançados (como aves), quanto em dinossauros ornitísquios. Mas podemos estar tão certos de que Tyrannosaurus Diplodocus são mais proximamente relacionados entre si (formando um clado Saurischia) só por causa de seus quadris? Afinal, esse é um quadril primitivo, então é bem improvável que seja uma sinapomorfia (um caráter derivado compartilhado). Não obstante, continuou sendo usado como um caráter unindo saurópodes e terópodes.

Um novo artigo publicado recentemente na Nature, no entanto, mostrou novas evidências de apontam para uma relação diferente dos grupos. Depois de uma análise detalhada da anatomia dos ossos, Matthew G. Baron, David B. Norman e Paul M. Barrett encontraram 20 caráteres que unem terópodes com ornitísquios e não com saurópodes. Entre esses podemos mencionar a presença de um forâmen (um furo) na região anterior do osso premaxilar que fica dentro da fossa narial (a depressão do osso que circunda a abertura da narina) e uma crista longitudinal afiada ao longo da maxila.

skulls

Os crânios tanto de ornitísquios quanto de terópodes (acima) apresentam um forâmen premaxilar na fossa narial (em amarelo) e uma crista afiada na maxila (em verde), bem como outros caracteres que não estão presentes em sauropodomorfos e herrerasaurídeos (abaixo). Composição usando imagens originais de Carol Abraczinskas e Paul C. Sereno (Heterodontosaurus), usuário do Wikimedia Ghedoghedo (Eoraptor e Herrerasaurus), e usuário do flickr philosophygeek (Plateosaurus).**

Em seu blog Tetrapod Zoology, o Dr. Darren Naish comenta a nova classificação e aponta alguns problemas que surgem com essa nova visão. Um deles é o fato de que tanto terópodes quanto sauropodomorfos possuem ossos pneumáticos (ocos), enquanto ornitísquios não os possuem assim. Se a nova filogenia estiver mais próxima da verdade, significa que a pneumacidade evoluiu duas vezes independentemente ou evoluiu apenas uma vez e foi perdida nos ornitísquios.

Ele também menciona que tanto ornitísquios quanto terópodes possuem estruturas como plumas e pelos na pele. Em terópodes, isso eventualmente originou as penas. Poderia essa ser outra sinapomorfia unindo esses grupos? Talvez… mas quando pensamos que pterossauros também tinham “pelos”, pode-se também concluir que uma estrutura integumentária já estava presente no ancestral comum dos dinossauros. Neste caso, talvez, apenas não os encontramos ainda em saurópodes. Agora imagine um Argentinosaurus gigante coberto de penas!

Uma preocupação que surgiu com essa nova organização é se sauropodomorfos ainda seriam considerados dinossauros. O termo “dinossauro” foi cunhado por Richard Owen em 1842 para se referir aos restos dos três gêneros de dinossauros conhecidos na época, Iguanodon, Hylaeosaurus Megalosaurus, os dois primeiros sendo ornitísquios e o último um terópode. Como consequência, a definição original de dinossauro não incluía saurópodes. De forma similar, a definição filogenética moderna de dinossauro era “o menor clado inclusivo contendo Passer domesticus (o pardal) e Triceratops horridus”. De forma a permitir que o Brachiosaurus e seus amigos continuem sentando com os dinossauros, Baron et al. sugeriram expandir a definição para incluir Diplodocus carnegii. Assim, dinossauros seriam o menor clado inclusivo contendo P. domesticusT. horridusD. carnegii.

Nesta nova árvore, o nome Saurischia ainda seria usado, mas se referindo apenas aos sauropodomorfos e alguns carnívoros primitivos, os herrerassaurídeos. O novo clado formado pela união de terópodes e ornitísquios foi proposto ser chamado de Ornithoscelida (“com pernas de ave”), um nome cunhado em 1870 para se referir às patas traseiras semelhantes às das aves em terópodes e ornitópodes (o subgrupo de ornitísquios que inclui dinossauros como o Iguanodon e os dinossauros com bico de pato.

O que podemos concluir com tudo isso? Nada vai mudar se você é só um entusiasta de dinossauros e não se importa com o que é um ornitísquio e um saurísquio. Agora se você é um fã de filogenia como eu, você está acostumado a mudanças súbitas nos ramos. A maioria dos fósseis de dinossauros basais são incompletos, assim aumentando o problema de saber como eles estão relacionados uns aos outros. Talvez esta nova visão vá durar e talvez novas evidências mudarão tudo de novo na semana que vem.

– – –

Referências e leitura adicional:

Baron, M., Norman, D., & Barrett, P. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution Nature, 543 (7646), 501-506 DOI: 10.1038/nature21700

Naish, D. (2017). Ornithoscelida Rises: A New Family Tree for DinosaursTetrapod Zoology.

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 4.0 Internacional.

Deixe um comentário

Arquivado em Evolução, Extinção, Paleontologia, Sistemática

Conflito de Gênero: Quem é o homem na relação?

por Piter Kehoma Boll

Todo mundo com algum conhecimento em evolução ouviu falar de conflito sexual, como machos e fêmeas têm diferentes interesses durante a reprodução, e seleção sexual, isto é, como um sexo pode influenciar a evolução do outro.

Organismos sexuais são quase sempre definidos pela presença de dois sexos: masculino e feminino. O sexo masculino é aquele que produz o menor gameta (célula sexual) e o sexo feminino é aquele que produz o maior gameta. O gameta masculino é geralmente produzido em grande quantidade, porque como é pequeno, é barato de fabricar. Por outro lado, o gameta feminino é produzido em pequena quantidade, porque seu grande tamanho o torna um gameta caro.

Uma imagem clássica de um gameta masculino (espermatozoide) chegando a um gameta feminino (ovócito) durante a fertilização. Veja a impressionante diferença em tamanho.

Uma imagem clássica de um gameta masculino (espermatozoide) chegando a um gameta feminino (ovócito) durante a fertilização. Veja a impressionante diferença em tamanho.

Como pode-se ver facilmente, a fêmea põe muito mais recursos na produção de um único descendente que um macho. Como resultado, as fêmeas costumam ser muito seletivas em relação a quem terá a honra de fertilizar seus ovos. Os machos precisam provar que são merecedores da paternidade, e a escolha da fêmea, através das gerações, aumenta características masculinas que elas julgam atraentes. Um exemplo clássico é o pavão.

O pavão é um dos exemplos mais famosos de como a seleção sexual pode guiar a evolução de espécies dioicas. Foto de Oliver Pohlmann.

O pavão é um dos exemplos mais famosos de como a seleção sexual pode guiar a evolução de espécies dioicas. Foto de Oliver Pohlmann.

Existem muitas exceções, é claro, a maioria delas guiadas pelo ambiente social das espécies ou devido a um ambiente natural incomum que possa aumentar o investimento masculino. Mas tudo isso se refere a espécies dioicas, isto é, espécies as quais machos e fêmeas são organismos separados. Mas o que acontece se você é parte de uma espécie hermafrodita, portanto sendo macho e fêmea ao mesmo tempo? Você simplesmente acasala com todo mundo? São todos versáteis todas as vezes que vão pra cama?

Bem, há uma grande diversidade nestes organismos, mas todos os princípios do conflito sexual ainda são válidos. Mesmo que você seja macho e fêmea ao mesmo tempo, você ainda tem o desejo de fertilizar tantos ovos quanto possível com seu esperma barato enquanto escolhe com cuidado quem é digno de fertilizar seus próprios ovos. O grande problema é que todos os outros querem o mesmo.

"Vamos lá, benzinho. Me deixa te fertilizar." "Você vai me deixar te fertilizar também?" Foto de Jangle1969, usuário do Wikimedia.*

“Vamos lá, benzinho. Me deixa te fertilizar.”
“Você vai me deixar te fertilizar também?”
Foto de Jangle1969, usuário do Wikimedia.*

Imagine que você é um hermafrodita com um punhado de ovos caros e um montão de esperma barato. Você está interessado em copular e sai para a caçada. Eventualmente você encontra outro indivíduo com as mesmas intenções. Vocês se olham nos olhos, se aproximam e começam a conversar. Vamos supor que você não achou o outro muito atraente para ser o pai dos seus filhos, mas você quer ser o pai dos filhos dele.

“Então, quais são suas preferências?” você pergunta.
“No momento eu quero ser o macho” responde o outro.

“Droga!”, você pensa. Vocês dois querem a mesma coisa. Vocês querem desempenhar o mesmo papel sexual, de forma que há um conflito de interesses ou, como é chamado, um “conflito de gênero”. Neste caso, em se tratando de comportamento sexual em biologia, a palavra gênero se refere ao papel que você desempenha no sexo. Quem vai ser o homem da relação?

Diante desse conflito, este dilema do hermafrodita, vocês dois precisam achar uma solução. Há quatro possíveis desfechos:

1. Você insiste em ser o macho e seu parceiro aceita fazer o papel de fêmea contra sua vontade. Você vence, o outro perde.
2. Seu parceiro insiste em ser o macho e você aceita fazer o papel de fêmea contra sua vontade. O outro vence, você perde.
3. Vocês dois insistem em ser o macho. O sexo não acontece e vocês dois vão para casa sem terem ido para a cama.
4. Vocês dois aceitam desempenhar os dois papéis. O sexo acontece e vocês entregam seu esperma com sucesso, mas são forçados a aceitar o esperma do outro cara também.

O pior para você é não ser capaz de entregar seu esperma, como queria. Assim 2 e 3 são os piores desfechos. 1 é o melhor desfecho para você, mas como você vai convencer seu parceiro a ser o perdedor? Assim, a melhor solução para todos é a 4. Nenhum dos dois está completamente feliz nem completamente frustrado.

As minhocas usam a posição 69 para trocar esperma. Foto de Beentree, usuário do Wikimedia.*

As minhocas usam a posição 69 para trocar esperma. Foto de Beentree, usuário do Wikimedia.*

Mas isso é o fim? Não necessariamente. O comportamento de acasalamento mais estável numa população é de fato aceitar fazer os dois papéis, mas as coisas podem continuar depois de você dar um beijo de despedida no seu companheiro. Agora você precisa lidar com seleção pós-copulatória.

Você fez sexo, entregou seu esperma, mas recebeu esperma em troca. Um esperma de baixa qualidade, em sua opinião. Você não vai deixá-lo fertilizar seus ovos, vai? Claro que não! Assim, tão logo seu parceiro sumiu de vista, você simplesmente cospe o esperma antes que ele atinja seus ovos! Ele nunca vai saber.

Um par de platelmintos, Macrostomum sp., acasalando. Veja como o branco, ao final, se curva sobre si mesmo e suga o esperma do outro cara para fora do poro feminino de forma a se livrar dele. Imagem extraída de Schärer et al. (2004) [veja referências].

Um par de platelmintos, Macrostomum sp., acasalando. Veja como o branco, ao final, se curva sobre si mesmo e suga o esperma do outro cara para fora do poro feminino de forma a se livrar dele. Imagem extraída de Schärer et al. (2004) [veja referências].

E assim você passou a perna no seu parceiro! Você aceitou receber o esperma dele em troca do seu próprio, mas depois você o descartou assim que seu parceiro foi embora. Você é demais! Certo? Mas… espera! E se ele fez o mesmo? E se o seu esperma também foi descartado?

Você não pode arriscar isso. Isso seria pior do que não ter copulado pra início de conversa, porque você teria desperdiçado energia e esperma por nada! Mas como garantir que o esperma permaneça onde deve estar?

Uma estratégia é incluir algumas cerdas rígidas em seus espermatozoides de forma que eles se prendam à parede interna da cavidade feminina e não possam ser removidos. Os espermatozoides funcionam como espinhos que entram facilmente mas são muito difíceis de serem puxados de volta. É isso que alguns platelmintos fazem.

Duas estratégias usadas por espécies de Macrostomum para forçar o parceiro a pegar seu esperma. (A) Uma espécie na qual dois indivíduos trocam esperma, mas depois tentam se livrar do esperma do parceiro, evoluíram espermatozoides com cerdas que os seguram na cavidade feminina. (B) Outras espécies evoluíram um comportamento mais agressivo, no qual eles injetam o esperma no parceiro usando um estilete (pênis) com uma ponta afiada capaz de perfurar o corpo. Neste caso não há necessidade de ter espermatozoides com cerdas.

Duas estratégias usadas por espécies de Macrostomum para forçar o parceiro a pegar seu esperma. (A) Uma espécie na qual dois indivíduos trocam esperma, mas depois tentam se livrar do esperma do parceiro, evoluíram espermatozoides com cerdas que os seguram na cavidade feminina. (B) Outras espécies evoluíram um comportamento mais agressivo, no qual eles injetam o esperma no parceiro usando um estilete (pênis) com uma ponta afiada capaz de perfurar o corpo. Neste caso não há necessidade de ter espermatozoides com cerdas. Imagem extraída de Schärer et al. (2011) [veja referências]

Outras espécies evoluíram uma abordagem mais agressiva. Elas armaram seus pênis com uma ponta afiada que perfura o corpo do parceiro, forçando-o a receber o esperma. O esperma é injetado nos tecidos do parceiro e nada em direção aos ovos.

Ambas as estratégias podem parecer soluções maravilhosas para o macho, mas lembre-se de que eles são hermafroditas, então tudo pode ser usado contra eles mesmos! E esse é o grande dilema do hermafrodita, ou o paradoxo final do hermafrodita. Eles estão constantemente tentando vencer a si mesmos.

A evolução não é incrível?

Veja também: Endosperma: o pivô do conflito sexual em angispermas.

– – –

Referências e leitura complementar:

Anthes, N., Putz, A., & Michiels, N. (2006). Hermaphrodite sex role preferences: the role of partner body size, mating history and female fitness in the sea slug Chelidonura sandrana Behavioral Ecology and Sociobiology, 60 (3), 359-367 DOI: 10.1007/s00265-006-0173-5

Janicke, T., Marie-Orleach, L., De Mulder, K., Berezikov, E., Ladurner, P., Vizoso, D., & Schärer, L. (2013). SEX ALLOCATION ADJUSTMENT TO MATING GROUP SIZE IN A SIMULTANEOUS HERMAPHRODITE Evolution, 67 (11), 3233-3242 DOI: 10.1111/evo.12189

Leonard, J. (1990). The Hermaphrodite’s Dilemma Journal of Theoretical Biology, 147 (3), 361-371 DOI: 10.1016/S0022-5193(05)80493-X

Leonard, J., & Lukowiak, K. (1991). Sex and the simultaneous hermaphrodite: testing models of male-female conflict in a sea slug, Navanax intermis (Opisthobranchia) Animal Behaviour, 41 (2), 255-266 DOI: 10.1016/S0003-3472(05)80477-4

Marie-Orleach, L., Janicke, T., & Schärer, L. (2013). Effects of mating status on copulatory and postcopulatory behaviour in a simultaneous hermaphrodite Animal Behaviour, 85 (2), 453-461 DOI: 10.1016/j.anbehav.2012.12.007

Schärer, L., Joss, G., & Sandner, P. (2004). Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck Marine Biology, 145 (2) DOI: 10.1007/s00227-004-1314-x

Schärer, L., Littlewood, D., Waeschenbach, A., Yoshida, W., & Vizoso, D. (2011). Mating behavior and the evolution of sperm design Proceedings of the National Academy of Sciences, 108 (4), 1490-1495 DOI: 10.1073/pnas.1013892108

Schärer, L., Janicke, T., & Ramm, S. (2015). Sexual Conflict in Hermaphrodites Cold Spring Harbor Perspectives in Biology, 7 (1) DOI: 10.1101/cshperspect.a017673

Wethington, A., & Dillon, JR, R. (1996). Gender choice and gender conflict in a non-reciprocally mating simultaneous hermaphrodite, the freshwater snail,Physa Animal Behaviour, 51 (5), 1107-1118 DOI: 10.1006/anbe.1996.0112

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

2 Comentários

Arquivado em Comportamento, Evolução, moluscos, vermes, Zoologia

Sexta Selvagem: Líquen-solar-elegante

por Piter Kehoma Boll

Bipolar e alpino em distribuição, ocorrendo tanto em regiões árticas e antárticas quanto nos Alpes e áreas temperadas próximas, o líquen-solar-elegante (Xanthoria elegans) é uma bela e interessante criatura. Como todos os líquens, ele é formado por um fungo associado a uma alga.

Um líquen-solar-elegante crescendo sobre uma rocha nos Alpes. Foto do usuário do flickr Björn S...*

Um líquen-solar-elegante crescendo sobre uma rocha nos Alpes. Foto do usuário do flickr Björn S…*

O líquen-solar-elegante cresce em rochas e geralmente tem um formato circular e uma cor vermelha ou laranja. Crescendo muito lentamente, a uma taxa de 0.5 mm ao ano, ele é útil para estimar a idade da face de uma rocha por uma técnica chamada liquenometria. Conhecendo-se a taxa de crescimento de um líquen, pode-se assumir a idade do líquen pelo seu diâmetro e assim determinar o tempo mínimo em que a rocha está exposta, já que um líquen não pode crescer numa rocha se ela não está lá, certo? Esta taxa de crescimento não é tão regular entre todas as populações. Liquens crescendo perto dos polos geralmente crescem mais rápido porque parecem ter taxas metabólicas mais altas para sobreviver a climas mais frios.

Além do seu uso para determinar a idade de uma superfície de rocha, o líquen-solar-elegante é um organismo modelo em experimentos relacionados à resistência aos ambientes extremos do espaço sideral. Ele mostrou ter a habilidade de sobreviver e se recuperar de exposições ao vácuo, a radiações UV, raios cósmicos e temperaturas variáveis por até 18 meses!

Talvez quando finalmente chegarmos a um novo planeta habitável, descobriremos que o líquen-solar-elegante já chegou lá séculos antes de nós!

– – –

Referências:

Murtagh, G. J.; Dyer, P. S.; Furneaux, P. A.; Critteden, P. D. 2002. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106(11): 1277–1286. DOI: 10.1017/S0953756202006615

Wikipedia. Xanthoria elegans. Available at: < https://en.wikipedia.org/wiki/Xanthoria_elegans >. Access on June 30, 2016.

– – –

Creative Commons License
*Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

Deixe um comentário

Arquivado em Algas, Botânica, Ecologia, Evolução, Fungos, Sexta Selvagem

Briga Biológica: O misterioso colecionador de pipas

por Piter Kehoma Boll

Um fóssil descrito recentemente a partir do Lagerstätte do Siluriano de Herefordshire, no Reino Unido, chamou muita atenção.

Uma foto do fóssil em si. Imagem de Briggs et al., extraída de news.nationalgeographic.com

Uma foto do fóssil em si. Imagem de Briggs et al., extraída de news.nationalgeographic.com

A aparência da criatura foi construída escaneando-se a rocha e criando uma reconstrução 3D do fóssil. Isso revelou que o animal, obviamente um artrópode, possui várias criaturas menores presas por longos fios, como pipas. A espécie foi chamada de Aquilonifer spinosus, significando “o carregador de pipas espinhoso”.

Uma reconstrução 3D de comoAquilonifer e suas pipas teriam parecido. Imagem de Briggs et al. extraída de sci-news.com

Uma reconstrução 3D de comoAquilonifer e suas pipas teriam parecido. Imagem de Briggs et al. extraída de sci-news.com

Os autores (Briggs et al., 2016) pensaram em três possibilidades para explicar as incomuns “pipas”. Elas poderiam ser parasitas, forontes (isto é, caroneiros), ou bebês. A ideia de parasitas foi descartada porque fios tão longos separando-os do hospedeiro tornariam difícil alimentar-se propriamente. Eles também consideraram improvável ser um caso de forontes, isto é, uma espécie que usa o hospedeiro como uma forma de se mover de um local para o outro, porque havia muitos deles e o hospedeiro provavelmente os teria removido usando as longas antenas.

Impressão artística de Aquilonifer spinosus por Andrey Atuchin.

Impressão artística de Aquilonifer spinosus por Andrey Atuchin.

A opção remanescente é de que as pipas fossem prole. A mãe (ou pai) os prenderia a si de forma a carregá-los por aí em uma forma única de cuidado parental. Os autores o compararam com vários outros grupos de artrópodes nos quais algumas espécies levam seus bebês consigo durante os primeiros dias. Eles também consideram que o animal poderia ter adiado seu processo de muda para evitar descartar os filhotes com o exoesqueleto.

Mas podemos ter certeza de que é esse o caso? O entomólogo Ross Piper pensa diferente. Ele compara as pipas com ácaros uropodinos, nos quais os jovens (deutoninfas) se prendem a besouros por longos pedúnculos de forma a serem transportados de uma fonte de alimento para outra. Como existem ácaros marinhos, esse poderia ser o caso. Ele também aponta que as pipas estão espalhadas pelo corpo, o que torna improvável que sejam filhotes, já que tal distribuição só atrapalharia a mobilidade do pai ou da mãe.

Briggs et al. responderam à crítica de Piper argumentando que ácaros marinhos só evoluíram recentemente e que o Aquilonifer é muito diferente de um besouro terrestre. Ele provavelmente era uma espécie bentônica, rastejando no fundo do oceano, e não um nadador, de forma que ele não seria um bom agente dispersor.

Qual a sua opinião? Eu acho difícil escolher um lado. A comparação de Piper com ácaros é interessante, mas apenas como uma forma de sugerir uma evolução convergente. Não consigo ver como as pipas seriam realmente ácaros ou mesmo aracnídeos. Agora o argumento sobre a posição das pipas no corpo é um bom ponto. Nenhum outro grupo de animais carrega os filhotes presos a longos pedúnculos espalhados por todo o corpo. Além disso, como o pai ou a mãe colocariam os filhotes lá de forma apropriada? Só consigo ver isso sendo plausível se o hospedeiro fosse o pai e a mãe subisse nele para prender os ovos ali. Ademais, eles não poderiam ser forontes que eram benéficos ao hospedeiro? Os pequeninos poderiam se beneficiar por se moverem por aí no grandão e assim atingir novas fontes de alimento enquanto davam proteção ou outra vantagem em troca. E quanto ao adiamento da muda no esqueleto, não consigo ver qualquer evidência de que houve algum adiamento. Não sabemos quanto tempo as pipas ficaram ali e talvez depois da muda elas poderiam simplesmente deixar suas casinhas e construir novas no novo esqueleto do hospedeiro.

Talvez nunca saibamos a verdade, mas podemos seguir trocando ideias.

– – –

Referências:

Briggs, D., Siveter, D., Siveter, D., Sutton, M., & Legg, D. (2016). Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care Proceedings of the National Academy of Sciences, 113 (16), 4410-4415 DOI: 10.1073/pnas.1600489113

Briggs, D., Siveter, D., Siveter, D., Sutton, M., & Legg, D. (2016). Reply to Piper: Aquilonifer’s kites are not mitesProceedings of the National Academy of Sciences, 113 (24) DOI: 10.1073/pnas.1606265113

Piper, R. (2016). Offspring or phoronts? An alternative interpretation of the “kite-runner” fossil Proceedings of the National Academy of Sciences, 113 (24) DOI: 10.1073/pnas.1605909113

Switek, B. 2016. This bizarre creature flew its babies like kites. National Geographic News. Available at < http://news.nationalgeographic.com/2016/04/160404-bizarre-creature-flew-babies-kites-arthropod-fossils-science/ >. Access on July 07, 2016.

 

Deixe um comentário

Arquivado em Comportamento, Ecologia, Evolução, Paleontologia, Zoologia

Sexta Selvagem: Orquídea-de-Darwin

por Piter Kehoma Boll

Orquídeas compreendem uma das mais numerosas famílias de plantas, então está mais do que na hora de ter uma orquídea na Sexta Selvagem. E qual escolha poderia ser melhor que a orquídea-de-Darwin, Angraecum sesquipedale?

Nativa de Madagascar, a orquídea-de-Darwin tem belas flores brancas em forma de estrela com uma aparência cerosa que são produzidas na natureza de Junho a Setembro. É uma orquídea epífita, crescendo em árvores, e suas raízes podem atingir vários metros de comprimento em torno dos troncos das árvores.

As flores brancas cerosas da orquídea-de-Darwin. Note os longos esporões pendendo das flores. Foto de Wildred Duckitt*.

As flores brancas cerosas da orquídea-de-Darwin. Note os longos esporões pendendo das flores. Foto de Wildred Duckitt*.

A característica mais distinta dessa espécie é a presença de um esporão muito longo, um tubo de até 43 cm de comprimento que contém o néctar. O epíteto “sesquipedale” é dado devido a essa estrutura, significando “um pé e meio de comprimento” em Latin, referindo-se ao comprimento do final do esporão à ponta da sépala dorsal. Após examinar várias flores, o naturalista Charles Darwin previu a existência de um polinizador com uma probóscide que seria longa o suficiente para atingir o néctar no final da espora. Mais tarde, Alfred Wallace notou que a mariposa-esfinge-de-Morgan (Xanthopan morganii), encontrada na África Oriental, possui uma probóscide quase longa o bastante para atingir o néctar e sugeriu que os naturalistas procurassem por espécies similares em Madagascar. De fato, algum tempo depois, espécimes da mariposa-esfinge-de-Morgan com uma probóscide muto longa, longa o bastante para atingir o final da espora, foram encontradas em Madagascar, confirmando a previsão de Darwin. Infelizmente isso aconteceu somente depois da morte de Darwin, de forma que ele nunca ficou sabendo da descoberta…

Atualmente há muitos cultivares e híbridos da orquídea-de-Darwin ao redor de todo o mundo.

– – –

Referências:

Nilsson, L. A. 1988. The evolution of flowers with deep corolla tubes. Nature, 333: 147-149. DOI: 10.1038/334147a0

Wikipedia. Angraecum sesquipedale. Disponível em: < https://en.wikipedia.org/wiki/Angraecum_sesquipedale >. Acesso em 18 de junho de 2016.

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

Deixe um comentário

Arquivado em Botânica, Evolução, Sexta Selvagem