Arquivo da categoria: Comportamento

Sexta Selvagem: Vespa-da-Figueira-Lacerdinha

por Piter Kehoma Boll

Durante as últimas três semanas, apresentei uma figueira, a figueira-lacerdinha, uma lacerdinha que a parasita, a lacerdinha-da-figueira, e um ácaro que parasita a lacerdinha, o ácaro-da-lacerdinha-da-figueira. Todavia eu ainda não escrevi sobre uma das criaturas mais interessantes que interage com uma figueira: seu polinizador.

No caso da figueira-lacerdinha, seu polinizador é a vespa-de-figueira Eupristina verticillata, que decidi chamar de Vespa-da-Figueira-Lacerdinha. Como todas as vespas-de-figueira, esta espécie é muito pequena e completamente adaptada para viver com figos. Elas não podem sobreviver sem a espécie exata de figueira com que interagem, e a figueira em questão não pode sobreviver sem a espécie exata de vespa. Como isso funciona?

Vamos começar nossa história com uma fêmea adulta de vespa-da-figueira-lacerdinha. As fêmeas são pretas e muito pequenas, medindo cerca de 1 a 1,2 mm de comprimento somente. Esta fêmea está voando por aí procurando um figo jovem que servirá como seu ninho e sua sepultura.

Assim é uma fêmea de vespa-da-figueira-lacerdinha. Foto de Forest & Kim Starr.*

Um figo, caso você não saiba, não é um fruto verdadeiro no sentido botânico. Ele é na verdade um tipo especial de inflorescência chamado sicônio que é basicamente um saco preenchido de flores. As paredes internas de um figo contêm muitas flores masculinas e femininas minúsculas e a única maneira de chegar a elas é através de um pequeno furo na ponta do figo. E este furo só está aberto durante os estágios iniciais do desenvolvimento do figo.

Figos da figueira-lacerdinha no seu primeiro estágio de desenvolvimento. Você pode ver o furo marcado por uma “aréola” mais escura ao redor. Este é o lugar por onde uma vespa fêmea entra no figo. Créditos ao usuário do Wikimedia Vinayaraj.**

Quando a fêmea de vespa-da-figueira-lacerdinha está voando por aí, está procurando por um figo que esteja neste exato estágio de desenvolvimento. Uma vez que ela o encontre, ela se arrasta para dentro do figo através daquele furinho. Ela geralmente perde as asas enquanto faz isso porque a passagem é estreita demais. Ela até mesmo precisa usar suas mandíbulas especialmente adaptadas para a ajudarem a passar. Uma vez dentro do figo, ela procura pelas flores femininas que estão na base no figo, longe da entrada. As flores masculinas, localizadas logo na entrada, ainda não estão maduras. Contudo as vespas fêmeas chegam com pólen que pegaram em outro lugar (você vai aprender isso daqui a pouco). Quando ela chega nas flores femininas, introduz seu ovopositor (a longa estrutura no final do abdome que é usada para pôr os ovos) dentro da flor feminina e põe um ovo dentro do ovário da flor. Seu ovopositor precisa ter o tamanho exato para alcançar o ovário e pôr o ovo. Se ele é curto demais, ela não é capaz de completar sua tarefa. E enquanto ela se move de flor em flor para pôr os ovos, acaba as polinizando. Depois de terminar, a vespa morre ainda dentro do figo.

Os ovários que receberam um ovo começam a crescer e formar uma galha (um “tumor de planta”) por influência do inseto e servem como abrigo e alimento para as larvas que eclodem dos ovos. Uma larva cresce, empupa e se torna adulta dentro de uma só galha. Quando as vespas finalmente chegam ao estágio adulto, deixam a galha na qual nasceram. Isso acontece quando o figo atinge seu estágio maduro.

Os machos são os primeiros a emergir. Eles são ainda menores que as fêmeas e possuem uma cor entre o amarelo e o marrom-claro. Eles roem seu caminho através da galha e, uma vez fora dela (mas ainda dentro do figo), começam desesperadamente a procurar vespas fêmeas para inseminar. Eles fazem isso arrebentando outras galhas e, quando uma fêmea é encontrada presa dentro, a inseminam. Depois disso, os machos cavam um buraco através do figo para o lado de fora e morrem logo depois, nunca vivenciando o mundo externo.

Uma vespa-da-figueira-lacerdinha macho (à direita) comparado com uma fêmea. Foto de Forest & Kim Starr.*

As vespas fêmeas então deixam as galhas e se movem em direção ao buraco aberto pelo macho. Enquanto fazem isso, elas se movem por cima das flores masculinas, agora maduras, e ficam cobertas de pólen. Depois de deixar o figo, elas procuram outro figo que esteja no primeiro estágio de desenvolvimento, recomeçando o ciclo.

Quando uma fêmea deixa um figo maduro, ela precisa encontrar um figo imaturo logo em seguida porque estará morta em um par de dias. Em outras palavras, a única forma de isso funcionar é se houver figos no estágio certo durante o ano todo, e é isso que acontece. Diferente da maioria das espécies de plantas, que produzem flores em uma época específica do ano, figueiras estão sempre floridas. Bem, não exatamente. Uma figueira individual produz figos em um período específico do ano. Todos os figos daquela árvore amadurecem ao mesmo tempo, ou seja, uma figueira tem uma sincronia de maturação de flores intraindividual. Contudo, outras árvores da mesma espécie possuem momentos diferentes para produzir flores, ou seja, há uma assincronia de maturação de flores interindividual. Isso garante que a vespa sempre encontrará um figo que seja adequado para seu estágio de maturação quando há figueiras suficientes em volta e também garante que a figueira não será fertilizada pela próprio pólen.

Como eu mencionei ao apresentar a figueira-lacerdinha, esta árvore só consegue produzir frutos viáveis quando a vespa está presente, de forma que populações introduzidas fora da área nativa só se reproduzirão se as vespas também forem introduzidas. Contudo, a vespa será incapaz de sobreviver se não houver figueiras o bastante para fornecer figos o ano todo. É uma relação delicada entre um inseto minúsculo, frágil e de vida curta e uma árvore enorme, resistente e de vida longa. E eles precisam um do outro para sobreviver.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Cook J, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. TRENDS in Ecology and Evolution 18(5): 241–248.

Kjellberg F, Jousselin E, Hossaert-McKey M, Rasplus J-Y (2005) Biology, Ecology, and Evolution of Fig-pollinating Wasps (Chalcidoidea, Agaonidae). In Raman A, Schaefer CW, Withers TM (Eds.) Biology, ecology and evolution of gall-inducing arthropods. v.2. New Hampshire, Science, p.539-572.

McPherson JR (2005) A Recent Expansion of its Queensland Range by Eupristina verticillata, Waterston (Hymenoptera, Agaonidae, Agaoninae), the Pollinator of Ficus microcarpa l.f. (Moraceae). Proceedings of the Linnean Society of New South Wales: 126: 197–201.

Weiblen DG (2002) How to be a fig wasp. Annual Review of Entomology 47: 299–330.

Wiebes JT (1992) Agaonidae (Hymenoptera, Chalcidoidea) and Ficus(Moraceae): fig waps and their figs, VIII (Eupristina s.l.). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 95(1): 109–125.

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 3.0 Não Adaptada.

**Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

Anúncios

Deixe um comentário

Arquivado em Comportamento, Ecologia, Entomologia, Sexta Selvagem

Tospovirus e lacerdinhas: uma aliança que aterroriza as plantas

por Piter Kehoma Boll

Recentemente apresentei uma lacerdinha na seção Sexta Selvagem, no caso uma lacerdinha que infecta principalmente figueiras. Este grupo de insetos, que compreendem a ordem Thysanoptera, é pouco conhecido pelo público geral, mas é certamente conhecido por jardineiros e fazendeiros, já que eles podem causar sérios incômodos a muitos tipos de plantas.

Poderíamos imaginar as lacerdinhas como sendo um tipo de mosquito das plantas. Elas furam a superfície de plantas e sugam os sucos assim como mosquitos fazem com vertebrados. E todos sabemos que uma picada de mosquito pode levar a muito mais que uma pequena perda de sangue e uma irritação local na pele. Muitos parasitas usam mosquitos como vetores para viajar de hospedeiro para hospedeiro, incluindo protistas como Plasmodium falciparum, que causa malária, e muitos tipos de vírus, como os do gênero Flavivirus, que causam febre amarela, dengue e zika.

Algo similar acontece na associação de lacerdinhas com plantas. Um gênero especial de vírus, chamado Tospovirus, infecta espécies de plantas e usa lacerdinhas como um vetor. Dentro dos corpos das lacerdinhas, os vírus se reproduzem após infectar as célula epiteliais do intestino e, de lá, viajam pelo sangue até as glândulas salivares e, quando uma lacerdinha perfura uma planta, o vírus é injetado nela. O ciclo é basicamente o mesmo usado por Flavivirus em mosquitos e carrapatos para infectar vertebrados. Não é incrível como um vírus como o Tospovirus pode infectar tanto um animal quanto uma planta? Mas qual exatamente é a doença causada por estes vírus?

Folha de manjericão infectada pelo vírus-do-vira-cabeça-do-tomateiro. Foto de Scot Nelson.**

Um dos Tospovirus mais comuns é o chamado vírus-do-vira-cabeça-do-tomateiro (TSWV, sigla do nome em inglês, Tomato spotted wilt virus), que é considerado um dos vírus de plantas economicamente mais devastadores no mundo. Ele pode infectar muitos tipos de plantas, como tomate, tabaco, pimentão, amendoim e manjericão. Os sintomas variam de planta para planta, mas geralmente incluem crescimento deficiente, frutos mal desenvolvidos, frequentemente com manchas anelares na superfície, e necrose das folhas. Ele é transmitido para plantas por lacerdinhas do gênero Frankliniella, especialmente a lacerdinha-das-flores-ocidental Frankliniella occidentalis. Apesar de o vírus geralmente precisar de várias horas para ser capaz de reinfectar uma planta após infectar uma lacerdinha, em condições ideais o tempo pode ser tão curto quanto cinco minutos.

A lacerdinha-das-flores-ocidental Frankliniella occidentalis. Foto de Dave Kirkeby.*

Mas por que uma lacerdinha se alimentaria de uma planta obviamente doente, toda feia e cheia de manchas? Elas certamente prefeririam uma planta mais saudável, mas isso preveniria o vírus de se espalhar. Como resultado, o vírus desenvolveu várias estratégias para atrair as lacerdinhas. O TSWV é capaz de aumentar a quantidade de aminoácidos livres em plantas infectadas, e estes são nutrientes essenciais para a produção de ovos em lacerdinhas. Como consequência, plantas infectadas se tornam mais nutritivas e atraem mais lacerdinhas. Alimentando-se de plantas infectadas, as lacerdinhas certamente ficarão infectadas e ao mesmo tempo ingerirão mais nutrientes que lacerdinhas não infectadas. Assim, uma lacerdinha doente na verdade tem um fitness aumentado e geralmente põe mais ovos. As plantas certamente ficariam apavoradas se fossem capazes de ter emoções.

O vírus-da-necrose-de-nervura-da-soja (SVNV, do inglês soybean vein necrosis virus) é outro Tospovirus de importância econômica. Como seu nome sugere, ele ataca principalmente a soja, e seu principal vetor é a lacerdinha-da-soja Neohydatothrips variabilis. Lacerdinhas-da-soja infectadas produzem significativamente mais filhotes que as não infectadas, mas indivíduos altamente infectados produzem menos ovos viáveis. Como as lacerdinhas resolvem esse problema? É simples! Uma vez que estejam infectadas, elas param de se alimentar de plantas infectadas e preferem as não-infectadas, o que aumenta seu sucesso reprodutivo por evitar que se tornem altamente infectadas e ao mesmo tempo espalham o vírus adiante para plantas não infectadas. Um pesadelo para as plantas mais uma vez.

Lacerdinha-da-soja Hydatothrips variabilis. Foto de Even Dankowicz.***

Um estudo recente investigou a relação entre outro par Tospovirus-lacerdinha, desta vez do vírus-da-mancha-amarela-da-íris (IYSV, do inglês iris yellow spot virus) que comumente ataca o alho e a cebola, e seu principal vetor, a lacerdinha-da-cebola, Thrips tabaci. Lacerdinhas infectadas não apresentam uma fecundidade diária maior, mas tem uma longevidade maior, permitindo que ponham mais ovos simplesmente por viverem mais tempo.

Lesão do IYSV em folha de cebola. Extraído de https://vegetableguide.usu.edu/diseases/onion/iris-yellow-spot-virus

Mas o efeito do Tospovirus em lacerdinhas pode ir além. Por exemplo, apesar de plantas infectadas pelo TSWV liberarem aminoácidos que atraem e aumentam a fecundidade de lacerdinhas, a infecção ainda parece ter alguns efeitos deletérios no inseto. Machos infectados de Frankliniella occidentalis aumentam o consumo de fluidos vegetais e aumentam a transmissão do vírus. Fêmeas, por outro lado, parecem precisar de nutrientes que não podem ser encontrados em plantas. Como resultado, elas aumentam o consumo de ovos do ácaro-rajado Tetranychus urticae, com o qual frequentemente coexistem. Apesar de primariamente herbívoras como a maioria das lacerdinhas, a lacerdinha-das-flores-ocidental eventualmente se alimenta de ovos de ácaros, e estarem infectadas pelo TSWV faz as fêmeas se tornarem mais ávidas por comerem ovos. Isto certamente não é uma estratégia do próprio vírus como as outras, visto que a fêmea que se alimenta de ovos de ácaro não contribui para o sucesso reprodutivo do vírus. Todavia, este é um fenômeno interessante que nos mostra como as interações na teia trófica podem ser dinâmicas, mudando, por exemplo, devido ao efeito colateral não intencional de um vírus tentando sobreviver.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Keough S, Han J, Shuman T, Wise K, Nachappa P (2016) Effects of Soybean Vein Necrosis Virus on Life History and Host Preference of Its Vector, Neohydatothrips variabilis , and Evaluation of Vector Status of Frankliniella tritici and Frankliniella fusca. Journal of Economic Entomology 109(5): 1979–1987. doi: 10.1093/jee/tow145

Leach A, Fuchs M, Harding R, Nault BA (2019) Iris Yellow Spot Virus Prolongs the Adult Lifespan of Its Primary Vector, Onion Thrips (Thrips tabaci) (Thysanoptera: Thripidae). Journal of Insect Science 19(3): 8. doi: 10.1093/jisesa/iez041

Shrestha A, Srinivasan R, Riley DG, Culbreath AK (2012) Direct and indirect effects of a thrips‐transmitted Tospovirus on the preference and fitness of its vector, Frankliniella fusca. Entomologia Experimentalis et Applicata 145(3): 260–271. doi: 10.1111/eea.12011

Stafford-Banks CA, Yang LH, McMunn MS, Ullman DE (2014) Virus infection alters the predatory behavior of an omnivorous vector. Oikos 123(11): 1384–1390. doi: 10.1111/oik.01148

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 4.0 Internacional.

**Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

***Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

Deixe um comentário

Arquivado em Comportamento, Entomologia

Uma perereca camaleônica

por Piter Kehoma Boll

Quando pensamos em animais mudando de cor para se adaptarem à cor de fundo, prontamente pensamos em camaleões, ou talvez em alguns trocadores de cores extremamente rápidos, incluindo cefalópodes como polvos e sépias. Contudo muitos outros animais possuem esta habilidade.

Um exemplo são as pererecas da família Rhacophoridae, especialmente do gênero Rhacophorus.

Recentemente, o fenômeno foi registrado pela primeira vez para a espécie Rhacophorus smaragdinus no nordeste da Índia. O animal era de um verde vívido quando encontrado, mas, assim que os pesquisadores o manipularam, ele mudou para um marrom fosco em questão de segundos, apenas para lentamente voltar ao verde depois de ser deixado em paz.

Uma fêmea de Rhacophorus smaragdinus se torna marrom ao ser manipulada e começa lentamente a se tornar verde novamente quando deixada em paz. Créditos a CK et al. (2019).*

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

CK D, Payra A, Tripathy B, Chandra K (2019) Observation on rapid physiological color change in Giant tree frog Rhacophorus smaragdinus (Blyth, 1852) from Namdapha Tiger Reserve, Arunachal Pradesh, India. Herpetozoa 32: 95–99. doi: 10.3897/herpetozoa.32.e36023

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

Deixe um comentário

Arquivado em anfíbios, Comportamento, Zoologia

Mais uma espécie se junta ao Clube das Matadoras de Marido

por Piter Kehoma Boll

Read it in English

Canibalismo sexual é o ato de comer um parceiro sexual logo antes, durante ou logo depois da cópula. Apesar de ser um comportamento consideravelmente raro, sua ocorrência é muito popular entre o público em geral.

Quando canibalismo sexual ocorre, geralmente consiste na fêmea comendo o macho. Dois casos populares são os dos louva-a-deuses e das aranhas, especialmente a viúva-negra. Este fenômeno, ao menos entre viúvas-negras, é muito mais raro do que a maioria das pessoas pensa.

Louva-a-deus-fêmea comento um macho saboroso. Foto de Oliver Koemmerling.*

Apesar de às vezes o canibalismo sexual ocorrer porque um dos parceiros confunde o outro com comida, em muitas espécies é uma estratégia selecionada evolutivamente para assegurar que a fêmea coma o suficiente para a prole se desenvolver adequadamente. Pode parecer horrível do ponto de vista humano, especialmente se pensarmos da perspectiva do macho, mas temos que lembrar que passar os genes para a próxima geração é o principal propósito da maioria dos organismos e, se o macho é bem-sucedido em fertilizar os ovos da fêmea, sua vida serviu seu propósito e ele pode morrer feliz.

Canibalismo sexual é, claro, quase exclusivamente observado entre predadores, o que é um tanto óbvio. E, como eu disse acima, ele é comumente realizado pela fêmea. Um grupo que é famoso por suas espécies com fêmeas empoderadas é a ordem de insetos Hymenoptera, que inclui abelhas, formigas, vespas, moscas-serra, entre outros. Visto que muitos himenópteros apresentam algum grau de socialidade, na qual sociedades são compostas quase exclusivamente por fêmeas, e os machos são gerados apenas para a reprodução, é curioso que canibalismo sexual nunca tenha sido registrado neste grupo… até agora.

Um estudo recentemente publicado examinou o comportamento de acasalamento de uma pequena vespa parasitoide, Gonatopus chilensis. Esta espécie pertence à família Dryinidae, da qual todas as espécies põem os ovos em insetos da subordem Auchenorrhyncha, que inclui cigarras, cigarrinhas, jequitiranaboias, entre outros. As larvas, após eclodirem do ovo, se alimentam do hospedeiro. Fêmeas adultas de vespas driinídeas também são predadores vorazes e se alimentam das mesmas espécies das quais se alimentaram como larvas.

Macho de Gonatopus chilensis (esquerda) inseminando uma fêmea (a), e fêmea comendo um macho (b e c). Extraído de Vira & Espinosa (2019).*

Após a cópula, fêmeas de G. chilensis foram frequentemente observadas tentando capturar os machos da mesmo forma como capturam as presas. Contudo apenas em uma ocasião a fêmea foi bem-sucedida e capturar o macho e comeu seu gáster (a porção grande e arredondada que forma a maior parte do abdome em vespas). Como apenas um evento de canibalismo foi observado, ele pode ser um fenômeno raro nesta espécie, mas como várias tentativas de capturar o macho foram vistas, parece que comer o macho é uma ideia interessante para as fêmeas.

Este é o primeiro caso conhecido de canibalismo sexual em himenópteros e, portanto, um registro importante que aumentou o número de grupos nos quais se sabe que este comportamento ocorre.

– – –

Você também pode gostar:

Fêmeas malvadonas não são populares entre louva-a-deuses

Libélulas machos não são tão violentas quanto se pensava

Ter poucas fêmeas transforma jabutis machos em estupradores

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Virla EG, Espinosa MS (2019) Observations on the mating behavior of a dryinid and first record of sexual cannibalism in the hymenoptera. Acta Ethologica. doi: 10.1007/s10211-019-00315-9

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

Deixe um comentário

Arquivado em Comportamento, Entomologia, Evolução

Pegos no flagra: Sexo de insetos preservado em âmbar

por Piter Kehoma Boll

Um artigo publicado recentemente descreve uma nova espécie de inseto da ordem Zoraptera a partir de dois espécimes encontrados em âmbar do Cretáceo médio do norte de Myanmar.

O casal preservado. ELes não deixaram descendentes, mas foram eternizados na ciência. Créditos a Chen & Su (2019).*

Mas a coisa mais impressionante sobre esta nova espécie pré-histórica, chamada Zorotypus pusillus, é o fato de que o fóssil contém um macho e uma fêmea que aparentemente morreram enquanto estavam acasalando. Isso é concluído porque os dois indivíduos estão muito próximos um do outro e o macho possui uma estrutura alongada saindo do seu abdome, o que provavelmente é o edeago ou órgão intromitente, um órgão similar a um pênis encontrado na maioria dos zorápteros e usado para levar o esperma até o interior da fêmea.

Um detalhe da extremidade posterior do macho mostrando o edeago ou órgão intromitente. Uma reconstrução anatômica é mostrada à direita. Cŕeditos a Chen & Su (2019).*

A ordem Zoraptera contém um número muito pequeno de espécies, atualmente 44 vivas e 14 fósseis. Eles são muito pequenos, vivem em grupos e se parecem com minúsculos cupins, apesar de não serem proximamente relacionados a estes. A maioria das espécies atuais acasala com o macho introduzindo o edeago na fêmea para entregar o esperma, mas pelo menos uma espécie, Zorotypus impolitus, não copula. Nesta espécie, o macho deposita espermatóforos microscópicos no abdome da fêmea.

A descoberta do comportamento de acasalamento preservado nesta espécie do Cretáceo indica que o comportamento de acasalamento visto na maioria das espécies vivas já era usado por espécies vivendo 99 milhões de anos atrás. A origem dos zorápteros ainda não é bem conhecida, mas este e outros fósseis indicam que eles existem pelo menos desde o começo do Cretáceo.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Chen X, Su G (2019) A new species of Zorotypus (Insecta, Zoraptera, Zorotypidae) and the earliest known suspicious mating behavior of Zorapterans from the mid-cretaceous amber of northern Myanmar. Journal of Zoological Systematics and Evolutionary Research. doi: 10.1111/jzs.12283

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

Deixe um comentário

Arquivado em Comportamento, Entomologia, Evolução, Paleontologia

Virando padrasto para transar: o incomum cuidado aloparental em uma abelhinha-carpinteira

por Piter Kehoma Boll

Read it in English

Mês passado, fiz alguns comentários sobre cuidado aloparental, isto é, o ato de tomar conta de uma prole que não é sua.

Na maioria das vezes, quando cuidado parental existe numa espécie, ele é realizado somente pela mãe. Quando há um ajudante, ele geralmente é o pai entre vertebrados, ou irmãos entre artrópodes, especialmente entre insetos sociais como abelhas e formigas. Machos tomando conta da prole em insetos sociais é algo improvável de acontecer na maioria das espécies porque o macho geralmente morre logo depois de acasalar.

Contudo uma situação incomum foi recentemente descoberta em Ceratina nigrolabiata, uma espécie de abelha-carpinteira-pequena da região do Mediterrâneo. Nesta espécie, a fêmea é poliândrica, isto é, ela acasala com vários machos, de forma que nem toda a sua prole tem o mesmo pai.

Esta não é a parte incomum, no entanto. O estranho é que machos desta espécie não morrem após acasalarem e ajudam a fêmea a tomar conta da prole. Enquanto a fêmea deixa o ninho para procurar alimento, o macho fica e toma conta dos ovos e das larvas, protegendo-os de inimigos naturais, como formigas. No entanto, como dito acima, as fêmeas desta espécie acasalam com muitos machos, e estudos genéticos revelaram que o macho guardando o ninho é o pai de somente cerca de 10% da prole.

Cuidado parental na abelhinha-carpinteira Ceratina nigrolabiata:
(A) A fêmea chega ao ninho. Um macho está voando por perto, procurando uma “solteirona”
(B) A fêmea cumprimenta seu macho ajudante
(C) Ninho seccionado mostrando três células com larvas/ovos e alimento e uma quarta célula sendo construída; a fêmea está à esquerda e o macho à direita
Créditos a Mikát et al. (2019) (Veja referências)

Então por que machos de Ceratina nigrolabiata cuidam dos filhos de outro macho? O que a equipe estudando este sistema descobriu é que quanto mais tempo o macho toma conta de um ninho, maior é a quantidade da prole que o tem como pai. Em outras palavras, parece que ajudar uma fêmea aumenta as chances de um macho copular com aquela fêmea, assim aumentando o número de descendentes que ele possui. Não obstante, os machos raramente ficavam por muito tempo no mesmo ninho, geralmente se movendo para outro ninho a cada semana mais ou menos, o que não aumenta a quantidade de sua própria prole no ninho.

A equipe também experimentalmente removeu fêmeas dos ninhos para observar como os machos se comportariam na ausência de uma fêmea. O que eles descobriram é que os machos geralmente abandonam o ninho quando isso acontece, não estando nem aí para os pobres bebês. Portanto, é provável que o cuidado aloparental dos machos seja na verdade um sub-produto de guardar a fêmea, isto é, o macho está lá para assegurar que terá acesso à fêmea quando ela estiver disposta a acasalar. Ele não se importa de verdade com os filhotes.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referência:

Mikát M, Janošik L, Černá K, Matuošková E, Hadrava J, Bureš V, Straka J (2019) Polyandrous bee provides extended offspring care biparentally as an alternative to monandry based eusociality. PNAS 116(13): 6238-6243. doi: 10.1073/pnas.1810092116

Deixe um comentário

Arquivado em Comportamento, Entomologia, Zoologia

Tartarugas-verdes confundem resíduos plásticos com lulas mortas, os comem, e morrem

por Piter Kehoma Boll

Read it in English

Poluição por plástico é um tópico popular recentemente e não é raro encontrar figuras de animais que morreram devido à ingestão de plástico ou outras complicações, como asfixia, causadas por pedaços de plástico. Contudo a causa da ingestão de plástico pela maioria das espécies ainda é desconhecida.

Albatroz com o estômago cheio de peças plásticas.

A tartaruga-de-couro, Dermochelys coriacea, é frequentemente mencionada como uma espécie que sofre pela ingestão de plástico devido a sua dieta ser composta primariamente por águas-vivas, com as quais sacolas plásticas flutuantes podem ser confundidas. Contudo outra tartaruga-marinha de ampla distribuição, a tartaruga-verde, Chelonia mydas, também é uma vítima comum da ingestão de plástico e quantidades tão pequenas quanto 1 g são suficientes para matar espécimes jovens bloqueando seus tratos digestivos. A dieta de tartarugas-verdes jovens e adultas é composta principalmente por ervas-marinhas e algas, de forma que a ingestão de plástico deve ser o resultado de outra causa e não sua similaridade com águas-vivas.

Uma sacola plástica em decomposição no oceano se parece com uma água-viva. Foto do usuário Seegraswise do Wikimedia.*

Apesar de serem quase estritamente herbívoras, tartarugas-verdes ingerem matéria animal quando são muito jovens e podem eventualmente consumir animais como adultas também, provavelmente como uma estratégia para sobreviver quando sua fonte de alimento principal é escassa. A ingestão de matéria animal geralmente acontece pela ingestão de animais mortos e um item animal morto comumente consumido são lulas mortas.

Uma tartaruga-verde rodeada de ervas-marinhas, sua principal fonte de alimento. Foto do usuário Danjgi do Wikimedia.**

Um estudo recente investigou a relação entre o comportamento necrofágico e o consumo de plástico na tartaruga-verde e descobriu que a quantidade de plástico ingerida por indivíduos se alimentando de lulas mortas é muito maior que a ingerida por indivíduos que não apresentam um comportamento necrofágico. No Brasil, a ingestão de plástico é responsável por cerca de 10% das mortes de tartarugas-verdes, mas este número pode chegar a 67% entre tartarugas-verdes que se alimentam de carcaças de lulas.

A ingestão de animais mortos costumava ser uma maneira eficiente de tartarugas-verdes adquirirem grandes porções de proteína. Contudo o fato de, atualmente, a maioria do material flutuante no oceano ser plástico e não animais mortos transformou uma estratégia bem-sucedida numa armadilha mortal. Se os humanos não começarem a controlar a produção de lixo plástico, haverá apenas dois resultados possíveis para as tartarugas-verdes em face a esta nova pressão seletiva: adaptação ou extinção.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Andrades R, Santos RA, Martins AS, Teles D, Santos RG (2019) Scavenging as a pathway for plastic ingestion by marine animals. Environmental Pollution 248: 159–165. doi: 10.1016/j.envpol.2019.02.010

Mrosovsky N, Ryan GD, James MC (2009) Leatherback turtles: the menace of plastic. Marine Pollution Bulletin 58(2): 287–289. doi: 10.1016/j.marpolbul.2008.10.018

Santos RG, Andrades R, Boldrini MA, Martins AS (2015) Debris ingestion by juvenile marine turtles: an underestimated problem. Marine Pollution Bulletin 93(1–2): 37–43. doi: 10.1016/j.marpolbul.2015.02.022

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

**Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 4.0 Internacional.

Deixe um comentário

Arquivado em Comportamento, Conservação, Extinção, Poluição, Zoologia