Arquivo da tag: criaturas resistentes a radiação

Sexta Selvagem: Tardígrado-Comum

por Piter Kehoma Boll

Pequenino e durão, nosso mais novo integrante da Sexta Selvagem pode ser encontrado escondido entre o musgo através da maior parte do planeta e talvez até além dele, porque se há uma espécie para a qual o espaço é tranquilo, essa espécie é o tardígrado-comum Milnesium tardigradum.

783px-sem_image_of_milnesium_tardigradum_in_active_state_-_journal-pone-0045682-g001-2

Uma imagem de microscopia eletrônica de varredura de um espécime de tardígrado-comum em seu estado ativo. Foto extraída de Schokraie et al. (2012).*

Você já deve ter ouvido falar dos tardígrados (ou ursos-d’água como também são chamados), minúsculos animaizinhos rechonchudos que são capazes de suportar as mais extremas condições, tal como dessecação intensa, radiação e mesmo o vácuo do espaço. A maior parte dos dados referentes à resistência desses organismos vem do tardígrado-comum, a espécie mais amplamente distribuída do filo Tardigrada.

Medindo até 0.7 mm de comprimento, o tardígrado-comum tem 8 patas com garras nas pontas e é considerado um predador, alimentando-se de uma variedade de outros organismos pequenos, incluindo algas, rotíferos e nematódeos. Ele tem uma distribuição cosmopolita e é comumente encontrado vivendo no musgo, tal como o musgo-prateado já apresentado aqui.

Como membros do supergrupo Ecdysozoa (que também inclui artrópodes e nematódeos), os tardígrados sofrem ecdise, também chamada comumente de muda, um processo pelo qual eles trocam o exoesqueleto. No tardígrado comum, as fêmeas sempre depositam os ovos perto da época da muda. Antes de deixarem o exoesqueleto velho, as fêmeas depositam o cacho de ovos, que pode variar de 1 a 12 ovos, entre o exoesqueleto velho e o novo e geralmente continuam dentro do exoesqueleto antigo por várias horas após porem os ovos. Quando elas finalmente vão embora, os ovos permanecem dentro da pele velha, o que talvez os ajude a ficarem mais protegidos do perigo.

milnesium_tardigradum

Um conjunto de sete ovos é deixado num exoesqueleto vazio enquanto a fêmea vai embora. Foto de Carolina Biological Supply Company.**

Quando o habitat do tardígrado comum se torna muito seco, ele entra num estado chamado criptobiose, no qual o corpo se encolhe e o metabolismo para. Nesse estado, conhecido como tun, ele pode suportar altas doses de radiação e tanto pressões atmosféricas altas quanto a ausência de pressão, sobrevivendo mesmo no ambiente do espaço sideral. Ele não é invencível, contudo. A radiação em doses acima de 1000 Gy pode nem sempre matá-lo, mas sempre o deixa estéril, o que é, evolutivamente, basicamente a mesma coisa.

615px-sem_image_of_milnesium_tardigradum_in_tun_state_-_journal-pone-0045682-g001-3

Imagem de microscopia eletrônica de varredura de um tardígrado no estado tun. Foto extraída de Schokraie et al. (2012)*

De qualquer forma, a barata-americana é só um amador se tratando de sobrevivência quando comparada com o tardígrado comum.

– – –

Referências:

Horikawa, D. D.; Sakashita, T.; Katagiri, C.; et al. (2009) Radiation tolerance in the tardigrade Milnesium tardigradumInternatonal Journal of Radiation Biology, 86(12): 843–848. http://dx.doi.org/10.1080/09553000600972956

Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, et al. (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS ONE 7(9): e45682. https://dx.doi.org/10.1371/journal.pone.0045682

Suzuki, A. C. (2003) Life history of Milnesium tardigradum Doyère (Tardigrada) under a rearing environment. Zoological Science 20(1): 49–57. https://doi.org/10.2108/zsj.20.49

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.5 Genérica.

**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição Não Comercial Sem Derivações 2.0 Genérica.

Deixe um comentário

Arquivado em Curiosidades, Evolução, Zoologia

Sexta Selvagem: Conan a bactéria

por Piter Kehoma Boll

A maioria das pessoas concordaria que 2016 foi um ano difícil. Então vamos tentar fazer 2017 melhor começando-o com uma espécie durona na Sexta Selvagem, na verdade uma das mais duronas de todas: Conan a bactéria, ou Deinococcus radiodurans.

Um parente da Taq, Conan a bactéria é uma bactéria consideravelmente grande, medindo 1.5 a 3.5 µm de diâmetro e geralmente formando grupos de quatro organismos presos entre si, uma formação conhecida como tétrade. Ela é uma bactéria extremófila, capaz de resistir a ambientes bem inóspitos. Na verdade, Conan a bactéria é um dos organismos mais resistentes à radiação conhecidos até o momento e também pode resistir a extremos de frio, desidratação, vácuo e ácido. Seu nome popular foi baseado no personagem Conan o bárbaro.

deinococcus_radiodurans

Uma tétrade de Deinococcus radiodurans.

Conan a bactéria foi descoberta em 1956 durante um experimento que tentou esterilizar comida enlatada usando altas doses de radiação. Uma bactéria sobreviveu às altas doses de radiação gama e foi identificada como uma espécie nova.

Mais tarde, um grupo de cientistas sugeriu que o alto grau de radiorresistência era uma adaptação ao ambiente marciano, de forma que essa poderia ser uma bactéria alienígena! Mas isso na verdade é besteira. Conan a bactéria não tem nada significativamente diferente de outras formas de vida na Terra, mas como tal resistência à radiação evoluiu? A radiação de fundo na Terra é muito fraca, de forma que isso não poderia ter surgido por seleção natural.

Os resultados de alguns experimentos publicados em 1996 revelaram que linhagens de D. radiodurans que são suscetíveis à dessecação também são suscetíveis à radiação. Assim, a explicação mais provável é que a alta resistência à radiação é simplesmente um efeito colateral da resistência à dessecação, uma condição muito mais comum no ambiente da bactéria.

O mecanismo que permite Conan a bactéria suportar a radiação é muito complexo, mas inclui a habilidade de reconstruir sequências de DNA de fragmentos, o que é auxiliado pelo fato de cada célula conter quatro cópias do cromossomo bacteriano, de forma que uma sequência parcialmente danificada pode servir de modelo para reparar outra sequência parcialmente danificada.

Nossos camaradinhas minúsculos são sempre cheios de surpresas incríveis!

– – –

Referências:

Mattimore, V., & Battista, J. (1996). Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Journal of Bacteriology, 178 (3), 633-637 DOI: 10.1128/jb.178.3.633-637.1996

Wikipedia. Deinococcus radiodurans. Available at <https://en.wikipedia.org/wiki/Deinococcus_radiodurans&gt;. Access on January 2, 2017.

Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A., & Radman, M. (2006). Reassembly of shattered chromosomes in Deinococcus radiodurans Nature DOI: 10.1038/nature05160

2 Comentários

Arquivado em Bactérias, Sexta Selvagem

Sexta Selvagem: Líquen-solar-elegante

por Piter Kehoma Boll

Bipolar e alpino em distribuição, ocorrendo tanto em regiões árticas e antárticas quanto nos Alpes e áreas temperadas próximas, o líquen-solar-elegante (Xanthoria elegans) é uma bela e interessante criatura. Como todos os líquens, ele é formado por um fungo associado a uma alga.

Um líquen-solar-elegante crescendo sobre uma rocha nos Alpes. Foto do usuário do flickr Björn S...*

Um líquen-solar-elegante crescendo sobre uma rocha nos Alpes. Foto do usuário do flickr Björn S…*

O líquen-solar-elegante cresce em rochas e geralmente tem um formato circular e uma cor vermelha ou laranja. Crescendo muito lentamente, a uma taxa de 0.5 mm ao ano, ele é útil para estimar a idade da face de uma rocha por uma técnica chamada liquenometria. Conhecendo-se a taxa de crescimento de um líquen, pode-se assumir a idade do líquen pelo seu diâmetro e assim determinar o tempo mínimo em que a rocha está exposta, já que um líquen não pode crescer numa rocha se ela não está lá, certo? Esta taxa de crescimento não é tão regular entre todas as populações. Liquens crescendo perto dos polos geralmente crescem mais rápido porque parecem ter taxas metabólicas mais altas para sobreviver a climas mais frios.

Além do seu uso para determinar a idade de uma superfície de rocha, o líquen-solar-elegante é um organismo modelo em experimentos relacionados à resistência aos ambientes extremos do espaço sideral. Ele mostrou ter a habilidade de sobreviver e se recuperar de exposições ao vácuo, a radiações UV, raios cósmicos e temperaturas variáveis por até 18 meses!

Talvez quando finalmente chegarmos a um novo planeta habitável, descobriremos que o líquen-solar-elegante já chegou lá séculos antes de nós!

– – –

Referências:

Murtagh, G. J.; Dyer, P. S.; Furneaux, P. A.; Critteden, P. D. 2002. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106(11): 1277–1286. DOI: 10.1017/S0953756202006615

Wikipedia. Xanthoria elegans. Available at: < https://en.wikipedia.org/wiki/Xanthoria_elegans >. Access on June 30, 2016.

– – –

Creative Commons License
*Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 2.0 Genérica.

2 Comentários

Arquivado em Algas, Botânica, Ecologia, Evolução, Fungos, Sexta Selvagem