Arquivo da tag: filogenia

Peixes-Bruxas: Outra Dor de Cabeça Filogenética

por Piter Kehoma Boll

Anos atrás, fiz uma postagem sobre os problemáticos Acoelomorpha e sua posição controversa entre animais bilaterais. Agora vou falar sobre outra dor de cabeça: peixes-bruxas.

Os peixes-bruxas são cordados primitivos que compõem a classe Myxini. Eles são animais marinhos que vivem no fundo do mar e se alimentam principalmente de vermes poliquetos que puxam para fora do substrato. Contudo eles também são carniceiros e possuem um comportamento peculiar no qual perfuram o corpo de peixes mortos e entram nele, comendo o animal morto de dentro para fora.

Espécime do peixe-bruxa-do-Pacífico Eptatretus stoutii. Foto de Jeanette Bham.*

Morfologicamente, peixes-bruxas são caracterizados pela presença de um crânio cartilaginoso, como vertebrados, mas não possuem uma coluna vertebral, mantendo a notocorda, a estrutura dorsal de material parecido com cartilagem, durante a vida toda. Devido a esta falta de vértebras, os peixes-bruxas eram classificados fora dos vertebrados, mas unidos a eles pela presença do crânio. Assim, Myxini era visto como o grupo irmão de Vertebrata e os dois juntos formavam o clado Craniata.

Entre os vertebrados, a maioria dos grupos atuais possui uma mandíbula que evoluiu de arcos branquiais modificados, compondo o clado Gnathostomata. Os únicos animais com uma coluna vertebral que não possuem mandíbulas são as lampreias (Petromyzontiformes) e, apesar de esta falta de mandíbulas ser compartilhada com peixes-bruxas, ela não é geralmente vista como uma sinapomorfia unindo estes grupos. Em peixes-bruxas, a boca sem mandíbula possui placas laterais de queratina com estruturas em forma de dente que agem mais ou menos como as mandíbulas verdadeiras de Gnathostomata, mas trabalhando a partir dos lados e não de cima e de baixo. Em lampreias, por outro lado, a boca é circular e possui estruturas de queratina em forma de dente arranjadas circularmente.

Organização geral da cabeça de peixes-bruxas, lampreias e vertebrados de mandíbula, com atenção especial às bocas. Extraído de Oisi et al. (2012).

Há muitas características morfológicas que unem lampreias a vertebrados e as separam de peixes-bruxas, a principal sendo a já mencionada coluna vertebral. Similarmente, lampreias e vertebrados de mandíbula possuem nadadeiras dorsais enquanto peixes-bruxas não as possuem. Lampreias também possuem olhos com lentes em comum com vertebrados de mandíbula, enquanto lampreias possuem ocelos simples sem lentes ou mesmo músculos associados.

Alguns dos traços compartilhados entre peixes-bruxas e lampreias, assim como a falta de mandíbulas, são geralmente vistos como um estado primitivo que mudou em vertebrados de mandíbula, ou claramente evoluíram de forma independente. Por exemplo, tanto peixes-bruxas quanto lampreias possuem apenas uma narina, enquanto vertebrados de mandíbula possuem duas, mas isto provavelmente é uma característica primitiva. Peixes-bruxas e lampreias adultos também possuem uma só gônada, mas ela aparece em peixes-bruxas pela atrofia da gônada esquerda, de forma que somente a direita se desenvolve, enquanto em lampreias as gônadas esquerda e direita se fundem em um órgão único.

Espécimes da lampreia-de-riacho-menor, Lampetra aepyptera. Foto de Jerry Reynolds.*

Portanto, morfologicamente, parece lógico considerar peixes-bruxas como grupo irmão de vertebrados, que inclui lampreias e vertebrados de mandíbula. Também é importante mencionar que há mais grupos de vertebrados sem mandíbula que estão atualmente extintos, como a classe Osteostraci, um dos vários grupos fósseis tradicionalmente chamados de ostracodermos. Apesar de também não possuírem uma mandíbula, estes vertebrados possuíam nadadeiras pares como vertebrados de mandíbula. Assim, a organização filogenética destes principais grupos com base na morfologia seria como mostrada na figura abaixo:

A hipótise dos craniados, onde peixes-bruxas são grupo irmão de vertebrados.

Contudo, nas últimas décadas, o uso de filogenia molecular desafiou esta visão ao agrupar peixes-bruxas e lampreias em um clado monofilético que é grupo irmão dos vertebrados de mandíbula. Mas como isso poderia ser possível? Tal relação implicaria que o estado primitivo dos peixes-bruxas é o resultado de perdas secundárias.

A hipótese dos ciclostomados. Peixes-bruxas são grupo irmão de lampreias.

Evidências de fósseis poderiam ajudar a esclarecer este assunto, mas a maioria dos fósseis que foram associados a peixes-bruxas não possuem caracteres morfológicos preservados que sejam bons o bastante para determinar sua correta posição filogenética. Recentemente, no entanto, um fóssil bem preservado de um peixe-bruxa do Cretáceo ajudou a elucidar parte da filogenia dos peixes-bruxas. A divergência entre lampreias e peixes-bruxas, considerando conhecimento prévio, era geralmente posicionada perto do início do período Cambriano, logo após o começo da divergência da maioria dos filos animais, mas com dados do novo fóssil, é empurrada para um ponto mais recente no tempo, pelo começo do Siluriano, mais de 130 milhões de anos depois. Este novo fóssil, chamado de Tethymyxine tapirostrum, claramente não possui esqueleto ou nadadeiras dorsais como vistos em lampreias e vertebrados de mandíbula, mas possui várias características compartilhadas com peixes-bruxas modernos.

Pelo menos duas sinapomorfias podem ser encontradas unindo peixes-bruxas e lampreias e separando-as de vertebrados de mandíbula. A primeira são os dentes, que nestes dois grupos são compostos de placas de queratina. O segundo é a organização dos miômeros, a série de músculos arranjados ao longo do corpo de cordados de forma um tanto segmentada, que tanto em peixes-bruxas quanto em lampreias começam bem ao redor dos olhos.

Considerando as evidências de dados moleculares, o novo fóssil que torna provável que peixes-bruxas e lampreias divergiram mais recentemente se são um grupo monofilético, e as prováveis sinapomorfias verdadeiras unindo estes dois grupo de vertebrados sem mandíbula, parece que peixes-bruxas e lampreias são de fato grupos irmãos, formando um clado chamado Cyclostomata e grupo irmão dos vertebrados de mandíbula, Gnathostomata. Se este é mesmo o caso, então as características aparentemente mais primitivas de peixes-bruxas são de fato o resultado de perdas secundárias e seu ancestral provavelmente possuía uma aparência mais vertebrada, com uma coluna vertebral, nadadeiras dorsais e olhos com lentes.

Mas vamos continuar de olho. As coisas podem mudar de novo no futuro conforme novos dados se tornam disponíveis.

– – –

Curta nossa página no Facebook!

Siga-me (@piterkeo) no Twitter!

– – –

Referências:

Miyashita T, Coates MI, Farrar R, Larson P, Manning PL, Wogelius RA, Edwards NP, Anné J, Bergmann U, Palmer AR, Currie PJ (2019) Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. PNAS 116(6): 2146–2151. doi: 10.1073/pnas.1814794116

Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (2012) Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493: 175–180. doi: 10.1038/nature11794

Wikipedia. Cyclostomata. Disponível em <
https://en.wikipedia.org/wiki/Cyclostomata >. Acesso em 25 de março de 2019.

Wikipedia. Hagfish. Disponível em <
https://en.wikipedia.org/wiki/Hagfish >. Acesso em 25 de março de 2019.

– – –

*Creative Commons License Esta obra está licenciada sob uma Licença Creative Commons de Atribuição Não Comercial 4.0 Internacional

Anúncios

Deixe um comentário

Arquivado em Evolução, Paleontologia, Sistemática, Zoologia

Quem veio primeiro? O pente ou a esponja?

por Piter Kehoma Boll

A eterna questão está de volta, mas dessa vez parece estar concluída. Qual grupo animal é o primeiro de todos? Quem veio primeiro?

Está claro que há cinco linhagens animais que geralmente são consideradas como monofiléticas: esponjas, placozoários, ctenóforos, cnidários e bilatérios. Vamos das uma breve olhada neles:

Esponjas (filo Porifera) são sempre sésseis, isto é, não se movem e são fixos ao substrato. Elas têm uma estrutura anatômica muito simples. Seu corpo é constituído de um tipo de tubo, tendo uma grande cavidade interna e duas camadas de células, uma externa e uma interna em torno da cavidade. Há várias pequenas aberturas conectando a cavidade ao exterior, chamadas de poros, e uma ou mais cavidades grandes, chamadas de ósculos. Entre as duas camadas de células há uma meso-hila gelatinosa contendo células não-especializadas, bem como estruturas esqueléticas, incluindo fibras de espongina e espículas de carbonato de cálcio ou sílica. Algumas espécies também secretam um esqueleto externo de carbonato de cálcio sobre o qual a parte orgânica cresce. Esponjas não possuem músculos, sistema nervoso, sistema excretor ou qualquer outro tipo de sistema. Elas simplesmente vivem batendo os flagelos de seus coanócitos (as células da camada interna), criando uma corrente de ar entrando pelos poros e saindo pelo ósculo. Os coanócitos capturam partículas orgânicas na água e as ingerem por fagocitose. Todas as células de uma esponja podem mudar de um tipo para outro e migram de uma camada para a outra, de forma que não há tecidos verdadeiros.

porifera_body_structures_01

Estruturas corporais encontradas em esponjas. Foto de Philip Chalmers.*

Placozoários (filo Placozoa) são ainda mais simples que as esponjas, mas eles têm tecidos verdadeiros. Eles são organismos ameboides achatados com duas camadas de epitélio, uma dorsal e uma ventral, e uma fina camada de células estreladas. A camada ventral é ligeiramente côncava e parece ser homóloga ao endoderma (a camada do tubo digestivo) de outros animais, enquanto a camada superior é homóloga ao ectoderma (a camada da “pele”).

701px-trichoplax_adhaerens_photograph

Trichoplax adhaerens, a única espécie atualmente no filo Placozoa. Foto de Bernd Schierwater.**

Ctenóforos (filo Ctenophora), também chamados de águas-vivas-de-pente, parecem águas-vivas verdadeiras, mas uma olhada mais de perto revela muitas diferenças. Externamente eles têm uma epiderme composta de duas camadas, uma externa que contém células sensoriais, células que secretam muco e algumas células especializadas, como coloblastos que ajudam a capturar presas e células contendo múltiplos cílios usados na locomoção, e uma camada interna com uma rede de nervos e células semelhantes a músculos. Eles possuem uma boca verdadeira que leva a uma faringe e um estômago. Do estômago, um sistema de canais distribui os nutrientes ao longo do corpo. Oposto à boca há um pequeno poro anal que pode excretar pequenas partículas não-desejadas, apesar de a maior parte do material rejeitado ser expelido pela boca. Há uma camada de material semelhante a geleia (mesogleia) entre o trato digestivo e a epiderme.

bathocyroe_fosteri

O ctenóforo Bathocyroe fosteri.

Cnidários (filo Cnidaria) têm uma estrutura similar à dos ctenóforos, mas não tão complexa. Eles também possuem uma epiderme externa, mas ela é composta de uma única camada de células, e um intestino em forma de saco cercado de células epiteliais (gastroderme), bem como uma mesogleia entre os dois. Em torno da boca há um ou dois conjuntos de tentáculos. A característica mais distinta de cnidários é a presença de células urticantes em forma de arpão, os cnidócitos, que são usados como um mecanismo de defesa e ajudam a subjugar presas.

800px-cross_section_jellyfish_en-svg

Estrutura corporal de um cnidário (água-viva). Foto de Mariana Ruiz Villarreal.

Bilatérios (clado Bilatéria) inclui todos os outros animais. Eles são muito mais complexos e são caracterizados por um corpo bilateral, cefalização (eles têm cabeças) e três camadas celulares principais, o ectoderma, que origina a epiderme e o sistema nervoso, o mesoderma, que origina os músculos e as células sanguíneas, e o endoderma, que se desenvolve nos sistemas digestório e endócrino.

500px-bilaterian-plan-svg

Estrutura básica de um bilatério.

Tradicionalmente, as esponjas sempre foram vistas como os animais mais primitivos devido a sua falta de tecidos verdadeiros, células musculares, células nervosas e tudo mais. Contudo, alguns estudos moleculares recentes puseram os ctenóforos como os animais mais primitivos. Isso foi bem inesperado, já que ctenóforos são muito mais complexos que esponjas e placozoários, o que sugeriria que músculos e um sistema nervoso evoluíram duas vezes no reino animal, ou que esponjas são uma bizarra simplificação de um ancestral mais complexo, o que seria muito difícil de explicar. O sistema nervoso dos ctenóforos é de fato bem incomum, mas não tanto a ponto de precisar de uma origem independente.

Contudo agora as coisas parecem estar definidas. Um estudo publicado recentemente na revista Current Biology por Simon et al. reconstruiu uma árvore filogenética usando 1719 genes de 97 espécies animais e aplicando métodos novos e mais congruentes. Com esse conjunto de dados mais refinado, eles recuperaram a reconstrução clássica que põe esponjas na base da árvore animal, um cenário mais plausível afinal.

Mas por que outros estudos haviam encontrado os ctenóforos como o grupo mais basal? Bom, parece que ctenóforos têm taxas de substituição incomumente altas, o que significa que seus genes evoluem mais depressa. Isso leva a um problema chamado “atração de ramos longos” em reconstruções filogenéticas. Como o DNA só tem quatro nucleobases diferentes, que são adenina, guanina, citosina e timina, e cada uma delas só pode mutar em uma das outras três, quando as mutações ocorrem muito frequentemente elas podem voltar ao que eram em um ancestral passado perdido há muito tempo, levando a erros de interpretação nas relações evolutivas. É isso que parece acontecer com ctenóforos.

Assim parece que no fim das contas a esponja veio mesmo primeiro.

– – –

Referências e leitura adicional:

Borowiec ML, Lee EK, Chiu JC, & Plachetzki DC 2015. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics 16: 987. DOI: 10.1186/s12864-015-2146-4

Littlewood DTJ 2017. Animal Evolution: Last Word on Sponges-First? Current Biology 27: R259–R261. DOI: 10.1016/j.cub.2017.02.042

Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A, Lapébie P, Corre E, Delsuc F, King N, Wörheide G, & Manuel M 2017. A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology 27: 958–967. DOI: 10.1016/j.cub.2017.02.031

Wallberg A, Thollesson M, Farris JS, & Jondelius U 2004. The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20: 558–578. DOI: 10.1111/j.1096-0031.2004.00041.x
– – –
*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.
**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição 4.0 Internacional.

3

Deixe um comentário

Arquivado em cnidários, esponjas, Evolução, Zoologia

Movendo os quadris de dinossauros e mexendo com suas cabeças

por Piter Kehoma Boll

Recentemente surgiram notícias relacionadas à filogenia de dinossauros que deixaram muitos atônitos, como você deve ter ouvido ou lido. Novas evidências anatômicas reconstruíram completamente a base da árvore genealógica dos dinossauros e estou aqui para explicar um pouco o que aconteceu.

Como todos sabemos, os dinossauros incluem uma grande variedade de criaturas, dos terópodes comedores de carne aos pescoçudos saurópodes e dos ceratopsianos chifrudos aos armados anquilossauros, entre muitos outros.

largestdinosaursbysuborder_scale

Silhueta de um humano comparada aos maiores dinossauros de cada grupo principal. Imagem de Matt Martyniuk.*

Por mais de um século, os dinossauros têm sido classificados em dois grupos, chamados Ornithischia e Saurischia. Ornithischia (“com quadril de ave”) incluem dinossauros cujos ossos pélvicos são mais similares ao que é encontrado em aves, com um púbis direcionado para trás. Saurischia (“com quadril de lagarto”), por outro lado, têm um púbis direcionado para a frente, como em répteis no geral. Isso agrupa os terópodes e os saurópodes no mesmo grupo como Saurischia enquanto outros dinossauros são agrupados como Ornithischia. Mas as aves são na verdade terópodes, assim sendo dinossauros com quadril de lagarto e não dinossauros com quadril de ave! Confuso, né? Então vamos dar uma olhada em seus quadris:

pelvic_bones1

Comparação dos quadris de um crocodilo (Crocodylus), um saurópode (Diplodocus), um terópode não aviano (Tyrannosaurus), uma ave (Apteryx), um tireóforo (Stegosaurus) e um ornitópode (Iguanodon). Vermelho = púbis; azul = ísquio; amarelo = ílio. Imagem minha, Piter K. Boll.**

Como se pode perceber, o estado primitivo, encontrado em crocodilos, saurópodes e terópodes primitivos, é o púbis voltado para a frente. Um púbis voltado para trás evoluiu pelo menos duas vezes independentemente, tanto em terópodes mais avançados (como aves), quanto em dinossauros ornitísquios. Mas podemos estar tão certos de que Tyrannosaurus Diplodocus são mais proximamente relacionados entre si (formando um clado Saurischia) só por causa de seus quadris? Afinal, esse é um quadril primitivo, então é bem improvável que seja uma sinapomorfia (um caráter derivado compartilhado). Não obstante, continuou sendo usado como um caráter unindo saurópodes e terópodes.

Um novo artigo publicado recentemente na Nature, no entanto, mostrou novas evidências de apontam para uma relação diferente dos grupos. Depois de uma análise detalhada da anatomia dos ossos, Matthew G. Baron, David B. Norman e Paul M. Barrett encontraram 20 caráteres que unem terópodes com ornitísquios e não com saurópodes. Entre esses podemos mencionar a presença de um forâmen (um furo) na região anterior do osso premaxilar que fica dentro da fossa narial (a depressão do osso que circunda a abertura da narina) e uma crista longitudinal afiada ao longo da maxila.

skulls

Os crânios tanto de ornitísquios quanto de terópodes (acima) apresentam um forâmen premaxilar na fossa narial (em amarelo) e uma crista afiada na maxila (em verde), bem como outros caracteres que não estão presentes em sauropodomorfos e herrerasaurídeos (abaixo). Composição usando imagens originais de Carol Abraczinskas e Paul C. Sereno (Heterodontosaurus), usuário do Wikimedia Ghedoghedo (Eoraptor e Herrerasaurus), e usuário do flickr philosophygeek (Plateosaurus).**

Em seu blog Tetrapod Zoology, o Dr. Darren Naish comenta a nova classificação e aponta alguns problemas que surgem com essa nova visão. Um deles é o fato de que tanto terópodes quanto sauropodomorfos possuem ossos pneumáticos (ocos), enquanto ornitísquios não os possuem assim. Se a nova filogenia estiver mais próxima da verdade, significa que a pneumacidade evoluiu duas vezes independentemente ou evoluiu apenas uma vez e foi perdida nos ornitísquios.

Ele também menciona que tanto ornitísquios quanto terópodes possuem estruturas como plumas e pelos na pele. Em terópodes, isso eventualmente originou as penas. Poderia essa ser outra sinapomorfia unindo esses grupos? Talvez… mas quando pensamos que pterossauros também tinham “pelos”, pode-se também concluir que uma estrutura integumentária já estava presente no ancestral comum dos dinossauros. Neste caso, talvez, apenas não os encontramos ainda em saurópodes. Agora imagine um Argentinosaurus gigante coberto de penas!

Uma preocupação que surgiu com essa nova organização é se sauropodomorfos ainda seriam considerados dinossauros. O termo “dinossauro” foi cunhado por Richard Owen em 1842 para se referir aos restos dos três gêneros de dinossauros conhecidos na época, Iguanodon, Hylaeosaurus Megalosaurus, os dois primeiros sendo ornitísquios e o último um terópode. Como consequência, a definição original de dinossauro não incluía saurópodes. De forma similar, a definição filogenética moderna de dinossauro era “o menor clado inclusivo contendo Passer domesticus (o pardal) e Triceratops horridus”. De forma a permitir que o Brachiosaurus e seus amigos continuem sentando com os dinossauros, Baron et al. sugeriram expandir a definição para incluir Diplodocus carnegii. Assim, dinossauros seriam o menor clado inclusivo contendo P. domesticusT. horridusD. carnegii.

Nesta nova árvore, o nome Saurischia ainda seria usado, mas se referindo apenas aos sauropodomorfos e alguns carnívoros primitivos, os herrerassaurídeos. O novo clado formado pela união de terópodes e ornitísquios foi proposto ser chamado de Ornithoscelida (“com pernas de ave”), um nome cunhado em 1870 para se referir às patas traseiras semelhantes às das aves em terópodes e ornitópodes (o subgrupo de ornitísquios que inclui dinossauros como o Iguanodon e os dinossauros com bico de pato.

O que podemos concluir com tudo isso? Nada vai mudar se você é só um entusiasta de dinossauros e não se importa com o que é um ornitísquio e um saurísquio. Agora se você é um fã de filogenia como eu, você está acostumado a mudanças súbitas nos ramos. A maioria dos fósseis de dinossauros basais são incompletos, assim aumentando o problema de saber como eles estão relacionados uns aos outros. Talvez esta nova visão vá durar e talvez novas evidências mudarão tudo de novo na semana que vem.

– – –

Referências e leitura adicional:

Baron, M., Norman, D., & Barrett, P. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution Nature, 543 (7646), 501-506 DOI: 10.1038/nature21700

Naish, D. (2017). Ornithoscelida Rises: A New Family Tree for DinosaursTetrapod Zoology.

– – –

*Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 3.0 Não Adaptada.

**Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons de Atribuição e Compartilhamento Igual 4.0 Internacional.

Deixe um comentário

Arquivado em Evolução, Extinção, Paleontologia, Sistemática

Acoelomorpha: uma dor de cabeça filogenética

ResearchBlogging.orgpor Piter Kehoma Boll

Dê uma olhada nesses caras:

Vermes verdes Symsagittifera roscoffensis (Graff, 1891). Foto por Vincent Maran. Extraída de doris.ffessm.fr

Vermes verdes Symsagittifera roscoffensis (Graff, 1891). Foto por Vincent Maran. Extraída de doris.ffessm.fr

Eles são membros do grupo Acoelomorpha, animais que ainda são um quebra-cabeças em filogenia. Isso quer dizer que ninguém sabe com certeza onde na árvore evolutiva dos animais eles estão exatamente.

Mas primeiramente, vamos dar uma olhada no que caracteriza um acelomorfo.

Estes carinhas são pequenos vermes, geralmente medindo menos de 1 mm de comprimento e vivendo em águas marinhas ou salobras ou como simbiontes. Há dois grupos de acelomorfos: Acoela e Nemertodermatida. Acelos são os mais simples; eles possuem uma boca, mas não possuem intestino, de forma que a comida ingerida vai diretamente para os tecidos internos. Em Nemertodermatida há um intestino cego, isto é, com só uma abertura, como nos cnidários e platelmintos. De fato, eles eram inicialmente classificados como platelmintos, mas várias características posteriormente desafiaram sua posição dentro deste filo. As principais diferenças são:

  • Acelomorfos possuem uma epiderme (“pele”) com cílios cujas raízes são interconectadas em um padrão hexagonal, enquanto outros platelmintos possuem cílios independentes.
  • Acelomorfos não possuem protonefrídeos (órgãos primitivos semelhantes a rins) e todos os outros grupos de animais possuem ao menos um destes ou órgãos mais complexos com função similar.
  • Enquanto platelmintos e todos os outros protostômios (artrópodes, anelídeos, moluscos, nematódeos…) possuem um cordão nervoso ventral e os deuterostômios (cordados, equinodermos…) possuem um dorsal, nos acelomorfos há vários cordões nervosos distribuídos radialmente ao longo do comprimento do corpo.

Distribuição de cordões nervosos em Acoelomorpha, Protostomia e Deuterostomia. Imagem por mim mesmo, Piter K. Boll

Distribuição de cordões nervosos em Acoelomorpha, Protostomia e Deuterostomia. Imagem por mim mesmo, Piter K. Boll

Analisando tais aspectos, parece óbvio que Acelomorpha é um grupo basal de animais bilaterais e pode ser o remanescente de um grupo primitivo de animais que posteriormente foi quase totalmente extinto pelos seus descendentes mais complexos, os protostômios verdadeiros e deuterostômios. Os cordões nervosos originalmente distribuídos radialmente foram simplificados em um dorsal ou ventral em grupos mais avançados, mas permaneceram radiais em Acoelomorpha.

Diversos estudos filogenéticos indicam que Acoelomorpha é de fato um grupo basal de animais bilaterais. Eles também não possuem diversos genes Hox importantes (responsáveis por determinar o plano corporal e a distribuição dos órgãos em animais) e é pouco provável que eles tenham perdido a maioria deles por simplificação secundária.

Outro grupo de animais simples, os Xenoturbellida, foi às vezes proposto como grupo irmão de Acoelomorpha. Sua proximidade seria explicada por vários aspectos compartilhados, principalmente o sistema nervoso simples, a ausência de um sistema estomatogástrico (boca-intestino), a estrutura dos cílios da epiderme e o fato incomum de que, em ambos os grupos, células degeneradas da epiderme são reabsorvidas pela gastroderme.

Um verme Xenoturbella. Foto extraída de bioenv.gu.se/english/staff/ Hiroaki_Nakano_eng/

Um verme Xenoturbella. Foto extraída de bioenv.gu.se/english/staff/ Hiroaki_Nakano_eng/

O grupo Xenoturbellida, contudo, foi posicionado em Deuterostomia em alguns estudos moleculares e recentemente Philippe et al. (2011) propuseram que Acoelomorpha também pertenceria aos Deuterostomia! Mas como isso poderia ser possível quando eles possuem caracteres tão obviamente primitivos e peculiares, como os cordões nervosos radialmente dispostos? A explicação do grupo é que Acoelomorpha, bem como Xenoturbellida, possuem uma sequência de microRNA (miR-103/107/2013) que é exclusiva de Deuterostomia, então eles também seriam deuterostômios.

Mas espere um pouco! O que eles querem dizer com “exclusivo de Deuterostomia”? Isso significa que essa sequência de microRNA é encontrada em deuterostômios, mas não em protostômios. Agora pense comigo. Nós temos 4 grupos de bilaterais aqui: Acoelomorpha, Xenoturbellida, Deuterostomia e Protostomia. Se olharmos para eles dessa forma, podemos ver que a afirmação “miR-103/107/2013 é exclusiva de Deuterostomia” é falsa. A verdade é que essa sequência está ausente em Protostomia, mas presente em todos os outros grupos. Não seria mais lógico pensar que, em vez de deuterostômios adquirindo esta sequência, o que realmente aconteceu é que ela era um microRNA primitivo e os protostômios o perderam?

Se você considerar Xenoturbellida e Acoelomorpha dentro de Deuterostomia, você precisa assumir que eles passaram por uma gigantesca simplificação, e você mantém os cordões nervosos radiais inexplicados. Agora se você pensar neles como grupos primitivos, a única coisa necessária é analisar os protostômios como tendo perdido uma sequência de microRNA. Uma explicação bem mais simples que não deixa lacunas abertas.

Posição filogenética de Acoelomorpha e Xenoturbellida de acordo com Philippe et al. 2011. Isso significa que (1) o ancestral dos bilaterais tinha um sistema complexo de genes Hox, sendo um animal complex; (2)  miR-103/107/2013 apareceu em um ancestral de deusterostômios verdadeiros + Xenacoelomorpha (Xenoturbellida + Acoelomorpha); (3) Xenacoelomorpha passou por uma imensa perda de genes Hox, perdeu a maioria dos órgãos internos e um misterioso conjunto de cordões nervosos apareceu. Muito complicado.

Posição filogenética de Acoelomorpha e Xenoturbellida de acordo com Philippe et al. 2011. Isso significa que (1) o ancestral dos bilaterais tinha um sistema complexo de genes Hox, sendo um animal complexo; (2) miR-103/107/2013 apareceu em um ancestral de deuterostômios verdadeiros + Xenacoelomorpha (Xenoturbellida + Acoelomorpha); (3) Xenacoelomorpha passou por uma imensa perda de genes Hox, perdeu a maioria dos órgãos internos e um misterioso conjunto de cordões nervosos apareceu. Muito complicado.

Posição filogenética de Acoelomorpha e Xenoturbellida de acordo com Boll et al. 2013 (esse sou eu!), baseado numa revisão de estudos anteriores,  como um grupo basal. Isso significa que (1) o ancestral dos bilaterais era um animal simples, com um conjunto simples de genes Hox, tendo miR-103/107/2013 e cordões nervosos radiais; (2) o conjunto de genes Hox se tornou mais complexo e os cordões nervosos foram simplificados para uma forma dorsal ou ventral; (3) miR-103/107/2013 é perdido em Deuterostomia. Bem mais simples.

Posição filogenética de Acoelomorpha e Xenoturbellida de acordo com Boll et al. 2013 (esse sou eu!), baseado numa revisão de estudos anteriores, como um grupo basal. Isso significa que (1) o ancestral dos bilaterais era um animal simples, com um conjunto simples de genes Hox, tendo miR-103/107/2013 e cordões nervosos radiais; (2) o conjunto de genes Hox se tornou mais complexo e os cordões nervosos foram simplificados para uma forma dorsal ou ventral; (3) miR-103/107/2013 é perdido em Protostomia. Bem mais simples.

Você pode ler mais nas referências listadas abaixo.

– – –

Referências:

Boll, P., Rossi, I., Amaral, S., Oliveira, S., Müller, E., Lemos, V., & Leal-Zanchet, A. (2013). Platyhelminthes ou apenas semelhantes a Platyhelminthes? Relações filogenéticas dos principais grupos de turbelários. Neotropical Biology and Conservation, 8 (1), 41-52 DOI: 10.4013/nbc.2013.81.06

Egger, B., Steinke, D., Tarui, H., De Mulder, K., Arendt, D., Borgonie, G., Funayama, N., Gschwentner, R., Hartenstein, V., Hobmayer, B., Hooge, M., Hrouda, M., Ishida, S., Kobayashi, C., Kuales, G., Nishimura, O., Pfister, D., Rieger, R., Salvenmoser, W., Smith, J., Technau, U., Tyler, S., Agata, K., Salzburger, W., & Ladurner, P. (2009). To Be or Not to Be a Flatworm: The Acoel Controversy. PLoS ONE, 4 (5) DOI: 10.1371/journal.pone.0005502

Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G., Edgecombe, G., Martinez, P., Baguna, J., Bailly, X., Jondelius, U., Wiens, M., Muller, W., Seaver, E., Wheeler, W., Martindale, M., Giribet, G., & Dunn, C. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 276 (1677), 4261-4270 DOI: 10.1098/rspb.2009.0896

Moreno, E., Nadal, M., Baguñà, J., & Martínez, P. (2009). Tracking the origins of the bilaterian
patterning system: insights from the acoel flatworm. Evolution & Development, 11 (5), 574-581 DOI: 10.1111/j.1525-142X.2009.00363.x

Mwinyi, A., Bailly, X., Bourlat, S., Jondelius, U., Littlewood, D., & Podsiadlowski, L. (2010). The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evolutionary Biology, 10 (1) DOI: 10.1186/1471-2148-10-309

Philippe, H., Brinkmann, H., Copley, R., Moroz, L., Nakano, H., Poustka, A., Wallberg, A., Peterson, K., & Telford, M. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470 (7333), 255-258 DOI: 10.1038/nature09676

4 Comentários

Arquivado em Acoela, Biologia Molecular, Evolução, Zoologia

Uma breve história dos reinos da vida

por Piter Kehoma Boll

Desde tempos antigos, os seres vivos são classificados como plantas ou animais e Lineu manteve este sistema em sua grande obra Systema Naturae no século XVIII, onde ele dividiu a natureza em três reinos: Regnum Animale (reino animal), Regnum Vegetabile (reino vegetal) e Regnum Lapideum (reino mineral). Esse sistema não pretendia refletir relações naturais entre organismos vivos, visto que Lineu era cristão e acreditava que todas as  formas de vida foram criadas separadamente por Deus da forma como elas são hoje, mas foi feita de forma a tornar o estudo de seres vivos mais fácil.

Lineu e os dois reinos da vida. Pintura por Alexander Roslin, 1775.

Lineu e os dois reinos da vida. Pintura por Alexander Roslin, 1775.

Quando os primeiros organismos unicelulares foram descobertos por Antonie van Leeuwenhoek em 1674, eles foram colocados em um dos dois reinos de seres vivos de acordo com suas características. Isso permaneceu assim até 1866, quando Ernst Haeckel propôs um terceiro reino da vida, o qual ele chamou de Protista, e inclui todos os organismos unicelulares nele.

Haeckel e os três reinos. Foto pela Linnean Society, 1908.

Haeckel e os três reinos. Foto pela Linnean Society, 1908.

Mais tarde, o desenvolvimento de microscopia óptica e eletrônica mostrou diferenças importantes em células, principalmente de acordo com a presença ou ausência de núcleos distintos, levando Édouard Chatton a distinguir organismos em procariontes (sem núcleo distinto) e eucariontes (com núcleo distinto) em um artigo de 1925. Baseado nisso, Copeland propôs um sistema de quatro reinos, movendo organismos procariontes, bactérias e algas verde-azuladas, para o reino Monera. A ideia de um ranking acima de reino veio desta época e assim a vida foi separada em dois impérios ou super-reinos, Prokaryota (Monera) e Eukaryota (Protista, Plantae, Animalia).

Dois impérios e quatro reinos

Dois impérios e quatro reinos

Desde a época de Haeckel, a posição dos fungos não era bem estabelecida, oscilando entre os reinos Protista e Plantae. Assim, em 1969, Robert Whittaker propôs um quinto reino para incluí-los, o chamado Reino Fungi. Este sistema de cinco reinos permaneceu constante por algum tempo; Monera eram procariontes; Plantae eram multicelulares autótrofos (produtores); Animais, multicelulares consumidores; e Fungi, multicelulares saprótrofos (decompositores). Protista era como um cesto de lixo, onde tudo que não se encaixava nos outros quatro reinos era colocado.

Whittaker e os cinco reinos. Fonte da fotografia: National Academy of Sciences: Robert H. Whittaker (1920—1980) – A Biographical Memoir por Walter E. Westman, Robrt K. Peet and Gene E. Likens.

Whittaker e os cinco reinos. Fonte da fotografia: National Academy of Sciences: Robert H. Whittaker (1920—1980) – A Biographical Memoir por Walter E. Westman, Robrt K. Peet and Gene E. Likens.

Com o advento de estudos moleculares perto de 1970, diferenças significativas foram encontradas entre os procariontes, relacionadas, por exemplo, à estrutura da membrana celular. Baseado nestes estudos, Carl Woese dividiu Prokaryota em Eubacteria e Archaeobacteria, enfatizando que as diferenças entre estes grupos eram tão grandes quanto aquelas entre eles e os eucariontes. Isso posteriormente levou a uma nova classificação da vida em três domínios: Bacteria, Archaea e Eukarya.

Woese e os três domínios. Foto de News Bureau – University of Illinois, dada por IGB (Institute for Genomic Biology).

Woese e os três domínios. Foto de News Bureau – University of Illinois, dada por IGB (Institute for Genomic Biology).

Pelo final do século XX, Thomas Cavalier-Smith, após um intenso estudo com protistas, criou um novo modelo com seis reinos. Bacteria e Archaea foram postas no mesmo reino, chamado Bacteria. Protistas foram divididos em dois reinos: (1) Chromista, incluindo Alveolata (Apicomplexa, protozoários parasitos como Plasmodium; Ciliophora, ciliados; e Dinoflagellata), Heterokonta ou Stramenopila (algas marrons, algas douradas, diatomáceas, oomicetos etc) e Rhizaria (como Radiolaria e Foraminifera), entre outros; e (2) Protozoa, incluindo Amoebozoa (amebas e mixomicetos), Choanozoa (coanoflagelados) e um conjunto de protozoários flagelados chamados Excavata. Glaucófitas e algas verdes e vermelhas foram classificadas dentro do reino Plantae.

Cavalier-Smith e seus dois novos reinos. Foto do Departamento de Zoologia - Universidade de Oxford.

Cavalier-Smith e seus dois novos reinos. Foto do Departamento de Zoologia – Universidade de Oxford.

A partir do século XXI, uma abordagem filogenética para classificar os seres vivos ganhou força. Após muitas análises moleculares usando genes diferentes, as relações evolucionárias reais entre eucariontes ainda não é clara. Contudo os seguintes grupos são suportados pela maioria das árvores filogenéticas:

(1) Archaeplastida (ou Plantae): glaucófitas (Glaucophyta), algas vermelhas (Rhodophyta), e algas e plantas verdes (Viridiplantae);

(2) Chromalveolata: Stramenopila ou Heterkonta, haptófita (Haptophytes), criptomônadas (Cryptophyta) e Alveolata;

(3) Rhizaria: Foraminifera, Radiolaria e alguns protozoários ameboides;

(4) Amoebozoa: amebas e mixomicetos;

(5) Opisthokonta: animais, fungos, coanoflagelados;

(6) Excavata: muitos protozoários flagelados. Este grupo, no entanto, não é tão bem suportado quanto os outros.

Os atuais (talvez nem tão) bem estabelecidos grupos de organismos

Os atuais (talvez nem tão) bem estabelecidos grupos de organismos

Assim, como podemos ver, o caso dos eucariontes ainda está para ser resolvido, mas esperamos que estudos moleculares nos ajudarão a entender melhor como a árvore da vida se ramifica.

– – –

Baldauf, S. L. et al. 2000: A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290, 972-977.

Cavalier-Smith, T. 2004: Only six kingdoms of life. Proceedings of the Royal Society B 271, 1275-1262.

Rogozin, I. B. et al. 2009: Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes. Genome, Biology and Evolution 1, 99-113.

Wikipedia. Kingdom (Biology). Disponível online em: <en.wikipedia.org/wiki/Kingdom_(biology)>. Acesso em 5 de dezembro de 2011.

1 comentário

Arquivado em Sistemática